BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10984206)

  • 1. The application of electrical impedance tomography to reduce systematic errors in the EEG inverse problem--a simulation study.
    Gonçalves S; de Munck JC; Heethaar RM; Lopes da Silva FH; van Dijk BW
    Physiol Meas; 2000 Aug; 21(3):379-93. PubMed ID: 10984206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
    Dabek J; Kalogianni K; Rotgans E; van der Helm FCT; Kwakkel G; van Wegen EEH; Daffertshofer A; de Munck JC
    Neuroimage; 2016 Feb; 127():484-495. PubMed ID: 26589336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head.
    Gonçalves SI; de Munck JC; Verbunt JP; Bijma F; Heethaar RM; Lopes da Silva F
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):754-67. PubMed ID: 12814242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data.
    Gonçalves S; de Munck JC; Verbunt JP; Heethaar RM; da Silva FH
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1124-8. PubMed ID: 12943281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Staelens S; Lemahieu I
    Phys Med Biol; 2009 Oct; 54(20):6079-93. PubMed ID: 19779215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography.
    Fernandez-Corazza M; Turovets S; Luu P; Price N; Muravchik CH; Tucker D
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1785-1797. PubMed ID: 29989921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of head models on EEG simulations and inverse source localizations.
    Ramon C; Schimpf PH; Haueisen J
    Biomed Eng Online; 2006 Feb; 5():10. PubMed ID: 16466570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models.
    Odabaee M; Tokariev A; Layeghy S; Mesbah M; Colditz PB; Ramon C; Vanhatalo S
    Neuroimage; 2014 Aug; 96():73-80. PubMed ID: 24736169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of skull-conductivity misspecification on inverse source localization in realistically shaped finite element head models.
    Pohlmeier R; Buchner H; Knoll G; Rienäcker A; Beckmann R; Pesch J
    Brain Topogr; 1997; 9(3):157-62. PubMed ID: 9104826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.
    Güllmar D; Haueisen J; Reichenbach JR
    Neuroimage; 2010 May; 51(1):145-63. PubMed ID: 20156576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of skull sutures, spongiform bone distribution, and aging skull conductivities on the EEG forward and inverse problems.
    McCann H; Beltrachini L
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34915464
    [No Abstract]   [Full Text] [Related]  

  • 13. Conventional and reciprocal approaches to the inverse dipole localization problem of electroencephalography.
    Finke S; Gulrajani RM; Gotman J
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):657-66. PubMed ID: 12814232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating EEG source imaging using intracranial electrical stimulation.
    Unnwongse K; Rampp S; Wehner T; Kowoll A; Parpaley Y; von Lehe M; Lanfer B; Rusiniak M; Wolters C; Wellmer J
    Brain Commun; 2023; 5(1):fcad023. PubMed ID: 36824389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity.
    Gao N; Zhu SA; He B
    Phys Med Biol; 2006 Jun; 51(12):3067-83. PubMed ID: 16757863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of dipole localization accuracy for MEG and EEG using a human skull phantom.
    Leahy RM; Mosher JC; Spencer ME; Huang MX; Lewine JD
    Electroencephalogr Clin Neurophysiol; 1998 Aug; 107(2):159-73. PubMed ID: 9751287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A global sensitivity analysis of three- and four-layer EEG conductivity models.
    Vallaghé S; Clerc M
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):988-95. PubMed ID: 19272874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of skull conductivity perturbations on EEG dipole source analysis.
    Chen F; Hallez H; Staelens S
    Med Phys; 2010 Aug; 37(8):4475-84. PubMed ID: 20879606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dipole position, orientation and noise on the accuracy of EEG source localization.
    Whittingstall K; Stroink G; Gates L; Connolly JF; Finley A
    Biomed Eng Online; 2003 Jun; 2():14. PubMed ID: 12807534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.