These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10984240)

  • 61. Whole-body PET/CT-mammography for staging breast cancer: initial results.
    Heusner TA; Freudenberg LS; Kuehl H; Hauth EA; Veit-Haibach P; Forsting M; Bockisch A; Antoch G
    Br J Radiol; 2008 Sep; 81(969):743-8. PubMed ID: 18508873
    [TBL] [Abstract][Full Text] [Related]  

  • 62. PET optimization for improved assessment and accurate quantification of 90Y-microsphere biodistribution after radioembolization.
    Martí-Climent JM; Prieto E; Elosúa C; Rodríguez-Fraile M; Domínguez-Prado I; Vigil C; García-Velloso MJ; Arbizu J; Peñuelas I; Richter JA
    Med Phys; 2014 Sep; 41(9):092503. PubMed ID: 25186412
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Relationship between 18F-FDG uptake and breast density in women with normal breast tissue.
    Vranjesevic D; Schiepers C; Silverman DH; Quon A; Villalpando J; Dahlbom M; Phelps ME; Czernin J
    J Nucl Med; 2003 Aug; 44(8):1238-42. PubMed ID: 12902413
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II.
    MacDonald L; Edwards J; Lewellen T; Haseley D; Rogers J; Kinahan P
    J Nucl Med; 2009 Oct; 50(10):1666-75. PubMed ID: 19759118
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Endoprobe: a system for radionuclide-guided endoscopy.
    Raylman RR; Srinivasan A
    Med Phys; 2004 Dec; 31(12):3306-13. PubMed ID: 15651613
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial.
    Poellinger A; Persigehl T; Mahler M; Bahner M; Ponder SL; Diekmann F; Bremer C; Moesta T
    Invest Radiol; 2011 Nov; 46(11):697-704. PubMed ID: 21788905
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simulated scatter performance of an inverse-geometry dedicated breast CT system.
    Bhagtani R; Schmidt TG
    Med Phys; 2009 Mar; 36(3):788-96. PubMed ID: 19378739
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Position of nuclear medicine modalities in the diagnostic work-up of breast cancer.
    Buscombe JR; Holloway B; Roche N; Bombardieri E
    Q J Nucl Med Mol Imaging; 2004 Jun; 48(2):109-18. PubMed ID: 15243412
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative contrast-enhanced mammography for contrast medium kinetics studies.
    Arvanitis CD; Speller R
    Phys Med Biol; 2009 Oct; 54(20):6041-64. PubMed ID: 19779213
    [TBL] [Abstract][Full Text] [Related]  

  • 71. SU-E-I-83: Detectability Limits of a New Positron Emission Mammography in Relation to Tumour-Size, Tumour-To-Background Ratio and Activity Concentration.
    Gonzalez AV; Hernández TG; Granero D; Gonzalez LB; Ferrando JR; Sanchez R; Ferrer J
    Med Phys; 2012 Jun; 39(6Part5):3644. PubMed ID: 28517629
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mammography fixed grid versus reciprocating grid: evaluation using cadaveric breasts as test objects.
    Kimme-Smith C; Sayre J; McCombs M; Gold RH; Bassett LW
    Med Phys; 1996 Jan; 23(1):141-7. PubMed ID: 8700025
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Potential of a Compton camera for high performance scintimammography.
    Zhang L; Rogers WL; Clinthorne NH
    Phys Med Biol; 2004 Feb; 49(4):617-38. PubMed ID: 15005169
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.
    Boehm T; Hochmuth A; Malich A; Reichenbach JR; Fleck M; Kaiser WA
    Invest Radiol; 2001 Oct; 36(10):573-81. PubMed ID: 11577267
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Experimental demonstration of ultrahigh sensitivity Talbot-Lau interferometer for low dose mammography.
    Safca N; Stutman D; Anghel E; Negoita F; Ur CA
    Phys Med Biol; 2022 Dec; 67(23):. PubMed ID: 36541499
    [No Abstract]   [Full Text] [Related]  

  • 76. Accurate estimation of compressed breast thickness in mammography.
    Mawdsley GE; Tyson AH; Peressotti CL; Jong RA; Yaffe MJ
    Med Phys; 2009 Feb; 36(2):577-86. PubMed ID: 19291997
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of array piezoelectric fingers towards in vivo breast tumor detection.
    Xu X; Chung Y; Brooks AD; Shih WH; Shih WY
    Rev Sci Instrum; 2016 Dec; 87(12):124301. PubMed ID: 28040934
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Radionuclide methods and instrumentation for breast cancer detection and diagnosis.
    Surti S
    Semin Nucl Med; 2013 Jul; 43(4):271-80. PubMed ID: 23725989
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reduction of the fluorine-18-labeled fluorodeoxyglucose dose for clinically dedicated breast positron emission tomography.
    Satoh Y; Sekine T; Omiya Y; Onishi H; Motosugi U
    EJNMMI Phys; 2019 Nov; 6(1):21. PubMed ID: 31784863
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Frequency-domain optical mammography: edge effect corrections.
    Fantini S; Franceschini MA; Gaida G; Gratton E; Jess H; Mantulin WW; Moesta KT; Schlag PM; Kaschke M
    Med Phys; 1996 Jan; 23(1):149-57. PubMed ID: 8700026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.