These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10984698)

  • 1. A controlled-notch specimen to study fatigue crack initiation in bone cement.
    Lu X; Topoleski LD
    J Biomed Mater Res; 2000 Sep; 53(5):505-10. PubMed ID: 10984698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    Biomaterials; 1998 Sep; 19(17):1569-77. PubMed ID: 9830982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide.
    Ayre WN; Scully N; Elford C; Evans BA; Rowe W; Rowlands J; Mitha R; Malpas P; Manti P; Holt C; Morgan-Jones R; Birchall JC; Denyer SP; Evans SL
    J Biomater Appl; 2021 May; 35(10):1235-1252. PubMed ID: 33573445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue crack propagation rates in PMMA bone cement cannot be reduced to a single power law.
    Race A; Mann KA
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):278-82. PubMed ID: 18161813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of porosity on the fatigue performance of polymethyl methacrylate bone cement: an analytical investigation.
    Evans SL
    Proc Inst Mech Eng H; 2006 Jan; 220(1):1-10. PubMed ID: 16459441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtomography assessment of failure in acrylic bone cement.
    Sinnett-Jones PE; Browne M; Ludwig W; Buffière JY; Sinclair I
    Biomaterials; 2005 Nov; 26(33):6460-6. PubMed ID: 15967499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.
    Jeffers JR; Browne M; Taylor M
    Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the environment on the crack initiation toughness of dental poly(methyl methacrylate).
    Hargreaves AS
    J Biomed Mater Res; 1981 Sep; 15(5):757-68. PubMed ID: 12659140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the importance of considering porosity when simulating the fatigue of bone cement.
    Jeffers JR; Browne M; Roques A; Taylor M
    J Biomech Eng; 2005 Aug; 127(4):563-70. PubMed ID: 16121525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test.
    Heuer DA; Mann KA
    J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of test specimen cross-sectional shape on the in vitro fatigue life of acrylic bone cement.
    Lewis G; Janna S
    Biomaterials; 2003 Oct; 24(23):4315-21. PubMed ID: 12853262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique.
    Roques A; Browne M; Thompson J; Rowland C; Taylor A
    Biomaterials; 2004 Feb; 25(5):769-78. PubMed ID: 14609665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of centrifugation on the fatigue life of bone cement in the presence of surface irregularities.
    Davies JP; O'Connor DO; Burke DW; Jasty M; Harris WH
    Clin Orthop Relat Res; 1988 Apr; (229):156-61. PubMed ID: 3349670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of fatigue properties of poly(methyl methacrylate) bone cement by means of plasma surface treatment of fillers.
    Kim HY; Yasuda HK
    J Biomed Mater Res; 1999; 48(2):135-42. PubMed ID: 10331906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes.
    Ormsby R; McNally T; O'Hare P; Burke G; Mitchell C; Dunne N
    Acta Biomater; 2012 Mar; 8(3):1201-12. PubMed ID: 22023747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.
    Race A; Miller MA; Mann KA
    J Biomech; 2008 Oct; 41(14):3017-23. PubMed ID: 18774136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.