These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 10984702)
1. Abrasive waterjet peening: a new method of surface preparation for metal orthopedic implants. Arola DD; McCain ML J Biomed Mater Res; 2000 Sep; 53(5):536-46. PubMed ID: 10984702 [TBL] [Abstract][Full Text] [Related]
2. Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments. Sonntag R; Reinders J; Gibmeier J; Kretzer JP PLoS One; 2015; 10(3):e0121963. PubMed ID: 25823001 [TBL] [Abstract][Full Text] [Related]
3. On the fatigue behavior of medical Ti6Al4V roughened by grit blasting and abrasiveless waterjet peening. Lieblich M; Barriuso S; Ibáñez J; Ruiz-de-Lara L; Díaz M; Ocaña JL; Alberdi A; González-Carrasco JL J Mech Behav Biomed Mater; 2016 Oct; 63():390-398. PubMed ID: 27454525 [TBL] [Abstract][Full Text] [Related]
4. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Khandaker M; Riahinezhad S; Sultana F; Vaughan MB; Knight J; Morris TL Int J Nanomedicine; 2016; 11():585-94. PubMed ID: 26893563 [TBL] [Abstract][Full Text] [Related]
5. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Barrere F; Snel MM; van Blitterswijk CA; de Groot K; Layrolle P Biomaterials; 2004 Jun; 25(14):2901-10. PubMed ID: 14962569 [TBL] [Abstract][Full Text] [Related]
6. Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. Soyama H; Takeo F Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408590 [TBL] [Abstract][Full Text] [Related]
7. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving. Jindal S; Bansal R; Singh BP; Pandey R; Narayanan S; Wani MR; Singh V J Oral Implantol; 2014 Jul; 40 Spec No():347-55. PubMed ID: 25020216 [TBL] [Abstract][Full Text] [Related]
8. Surface, Subsurface and Tribological Properties of Ti6Al4V Alloy Shot Peened under Different Parameters. Yıldıran Avcu Y; Yetik O; Guney M; Iakovakis E; Sınmazçelik T; Avcu E Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33008035 [TBL] [Abstract][Full Text] [Related]
9. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. Sealy MP; Guo YB J Mech Behav Biomed Mater; 2010 Oct; 3(7):488-96. PubMed ID: 20696413 [TBL] [Abstract][Full Text] [Related]
10. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Bagherifard S; Hickey DJ; Fintová S; Pastorek F; Fernandez-Pariente I; Bandini M; Webster TJ; Guagliano M Acta Biomater; 2018 Jan; 66():93-108. PubMed ID: 29183850 [TBL] [Abstract][Full Text] [Related]
11. Experimental Investigation on Surface Quality Processed by Self-Excited Oscillation Pulsed Waterjet Peening. Ding X; Kang Y; Li D; Wang X; Zeng D Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28841184 [TBL] [Abstract][Full Text] [Related]
12. Effects of WC-17Co Coating Combined with Shot Peening Treatment on Fatigue Behaviors of TC21 Titanium Alloy. Du D; Liu D; Zhang X; Tang J; Meng B Materials (Basel); 2016 Oct; 9(11):. PubMed ID: 28773984 [TBL] [Abstract][Full Text] [Related]
13. Effect of Shot Peening on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants Produced by 3D Printing Technology. Żebrowski R; Walczak M; Korga A; Iwan M; Szala M J Healthc Eng; 2019; 2019():8169538. PubMed ID: 31934324 [TBL] [Abstract][Full Text] [Related]
14. Finite element modeling of multiple water droplets impact onto a rough surface: Re-assessing Sa and surface wavelength. Xie J; Chen P; Rittel D J Mech Behav Biomed Mater; 2020 Oct; 110():103816. PubMed ID: 32501219 [TBL] [Abstract][Full Text] [Related]
15. Deep rolling of titanium rods for application in modular total hip arthroplasty. Schuh A; Zeller C; Holzwarth U; Kachler W; Wilcke G; Zeiler G; Eigenmann B; Bigoney J J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):330-5. PubMed ID: 16969829 [TBL] [Abstract][Full Text] [Related]
16. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating. Pan X; Li X; Zhou L; Feng X; Luo S; He W Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327 [TBL] [Abstract][Full Text] [Related]
17. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications. Li F; Li J; Kou H; Huang T; Zhou L J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823 [TBL] [Abstract][Full Text] [Related]
18. Effect of wire electro discharge machining process parameters on surface integrity of Ti Takale AM; Chougule NK Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():264-274. PubMed ID: 30678911 [TBL] [Abstract][Full Text] [Related]
19. Bioactive materials driven primary stability on titanium biocomposites. Dantas TA; Abreu CS; Costa MM; Miranda G; Silva FS; Dourado N; Gomes JR Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1104-1110. PubMed ID: 28531984 [TBL] [Abstract][Full Text] [Related]
20. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties. Lieblich M; Barriuso S; Multigner M; González-Doncel G; González-Carrasco JL J Mech Behav Biomed Mater; 2016 Feb; 54():173-84. PubMed ID: 26458115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]