These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10984872)

  • 1. Autoassociative MLP in sleep spindle detection.
    Huupponen E; Värri A; Himanen SL; Hasan J; Lehtokangas M; Saarinen J
    J Med Syst; 2000 Jun; 24(3):183-93. PubMed ID: 10984872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study.
    Ventouras EM; Monoyiou EA; Ktonas PY; Paparrigopoulos T; Dikeos DG; Uzunoglu NK; Soldatos CR
    Comput Methods Programs Biomed; 2005 Jun; 78(3):191-207. PubMed ID: 15899305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplitude normalization applied to an artificial neural network-based automatic sleep spindle detection system.
    Ventouras EM; Panagi M; Tsekou H; Paparrigopoulos TJ; Ktonas PY
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3240-3. PubMed ID: 25570681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic sleep spindle detector based on wavelets and the teager energy operator.
    Ahmed B; Redissi A; Tafreshi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2596-9. PubMed ID: 19965220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance evaluation of an Artificial Neural Network automatic spindle detection system.
    Ventouras EM; Economou NT; Kritikou I; Tsekou H; Paparrigopoulos TJ; Ktonas PY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4328-31. PubMed ID: 23366885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and comparison of four sleep spindle detection methods.
    Huupponen E; Gómez-Herrero G; Saastamoinen A; Värri A; Hasan J; Himanen SL
    Artif Intell Med; 2007 Jul; 40(3):157-70. PubMed ID: 17555950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated measurement of alpha, beta, sigma, and theta burst characteristics.
    Smith JR; Karacan I; Yang M
    Sleep; 1979; 1(4):435-43. PubMed ID: 228376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validating an automated sleep spindle detection algorithm using an individualized approach.
    Ray LB; Fogel SM; Smith CT; Peters KR
    J Sleep Res; 2010 Jun; 19(2):374-8. PubMed ID: 20149067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A personalized semi-automatic sleep spindle detection (PSASD) framework.
    Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA
    J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing.
    Kabir MM; Tafreshi R; Boivin DB; Haddad N
    Med Biol Eng Comput; 2015 Jul; 53(7):635-44. PubMed ID: 25779627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking matching pursuit to find sleep spindles.
    Schönwald SV; de Santa-Helena EL; Rossatto R; Chaves ML; Gerhardt GJ
    J Neurosci Methods; 2006 Sep; 156(1-2):314-21. PubMed ID: 16546262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic distribution of sleep spindles in young healthy subjects.
    Zeitlhofer J; Gruber G; Anderer P; Asenbaum S; Schimicek P; Saletu B
    J Sleep Res; 1997 Sep; 6(3):149-55. PubMed ID: 9358392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic sleep-spindle detection procedure: aspects of reliability and validity.
    Schimicek P; Zeitlhofer J; Anderer P; Saletu B
    Clin Electroencephalogr; 1994 Jan; 25(1):26-9. PubMed ID: 8174288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possibilities of classification of topographically distributed neurophysiological multi-channel data.
    Rölz L; Wolter S; Klee B; Schöntube E
    Int J Clin Monit Comput; 1996 Feb; 13(1):27-34. PubMed ID: 8738597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles.
    Wei L; Ventura S; Ryan MA; Mathieson S; Boylan GB; Lowery M; Mooney C
    Comput Biol Med; 2022 Nov; 150():106096. PubMed ID: 36162199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects.
    Wendt SL; Christensen JA; Kempfner J; Leonthin HL; Jennum P; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4250-3. PubMed ID: 23366866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network for sleep EEG K-complex detection.
    Strungaru C; Popescu MS
    Biomed Tech (Berl); 1998; 43 Suppl 3():113-6. PubMed ID: 11776208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reticular arousal threshold during the transition from slow wave sleep to paradoxical sleep in the rat.
    Piallat B; Gottesmann C
    Physiol Behav; 1995 Jul; 58(1):199-202. PubMed ID: 7667422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep spindle detection through amplitude-frequency normal modelling.
    Nonclercq A; Urbain C; Verheulpen D; Decaestecker C; Van Bogaert P; Peigneux P
    J Neurosci Methods; 2013 Apr; 214(2):192-203. PubMed ID: 23370313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Auto-regressive powerspectrum and component analysis of EEG activities in various sleep stages in normal children].
    Ogawa T; Yamaguchi K
    No To Shinkei; 1977 Jan; 29(1):45-55. PubMed ID: 195592
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.