These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 1098558)
1. Fluorescent probes in nerve membranes. Conti F Annu Rev Biophys Bioeng; 1975; 4(00):287-310. PubMed ID: 1098558 [No Abstract] [Full Text] [Related]
2. Further studies of nerve membranes labeled with fluorescent probes. Tasaki I; Hallett M; Carbone E J Membr Biol; 1973; 11(4):353-76. PubMed ID: 4778802 [No Abstract] [Full Text] [Related]
3. The use of fluorescent probes for the study of membranes. Azzi A Methods Enzymol; 1974; 32():234-46. PubMed ID: 4444525 [No Abstract] [Full Text] [Related]
4. 1-Anilino-8-naphthalenesulfonate: a fluorescent indicator of ion binding electrostatic potential on the membrane surface. Haynes DH J Membr Biol; 1974 Jul; 17(3):341-66. PubMed ID: 4847764 [No Abstract] [Full Text] [Related]
5. Studies on DNA-recipient interaction. I. Investigation of the interaction between recipients and transfection stimulators with fluorescent probes. Sabelnikov AG; Moiseeva TF; Avdeeva AV; Ilyashenko BN Biochim Biophys Acta; 1974 Dec; 374(3):304-15. PubMed ID: 4611495 [No Abstract] [Full Text] [Related]
6. [The effect of surface and membrane potential on 1-anilino-8-naphthalenesulfonate binding with E. coli membrane]. Lebedev VS; Kornev AP; Fedorov IuI Biofizika; 1988; 33(5):800-3. PubMed ID: 3066405 [TBL] [Abstract][Full Text] [Related]
7. [Letter: Electrostatic character of the interaction between fluorescent probes and lymphocyte membranes]. Sergeev PV; Denisov IuP; Maĭskiĭ IN; Seĭfulla RD; Kuz'mina EN Biofizika; 1975; 20(2):330-2. PubMed ID: 1148313 [No Abstract] [Full Text] [Related]
8. [Use of the fluorescent probe method to study the interaction of barbiturates with biological membranes]. Denisov IuP; Danilov SM Biofizika; 1975; 20(6):1027-8. PubMed ID: 1203293 [TBL] [Abstract][Full Text] [Related]
9. 8-Anilinonaphthalene-1-sulphonate interaction with whole and disrupted mitochondria: a re-evaluation of the use of double-reciprocal plots in the derivation of binding parameters for fluorescent probes binding to mitochondrial membranes. Gains N; Dawson AP Biochem J; 1975 Apr; 148(1):157-60. PubMed ID: 1156395 [TBL] [Abstract][Full Text] [Related]
10. Optical determination of electrical properties of red blood cell and Ehrlich ascites tumor cell membranes with fluorescent dyes. Laris PC; Hoffman JF Soc Gen Physiol Ser; 1986; 40():199-210. PubMed ID: 2424095 [No Abstract] [Full Text] [Related]
11. A procedure for estimating the surface potential of charged or neutral membranes with 8-anilino-1-naphthalenesulphonate probe. Adequacy of the Gouy-Chapman model. Gibrat R; Romieu C; Grignon C Biochim Biophys Acta; 1983 Dec; 736(2):196-202. PubMed ID: 6652083 [TBL] [Abstract][Full Text] [Related]
12. Molecular aspects of electrical excitation in lipid bilayers and cell membranes. Mueller P Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770 [TBL] [Abstract][Full Text] [Related]
16. 1-Anilino-8-naphthalenesulfonate: a fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry. Haynes DH; Simkowitz P J Membr Biol; 1977 May; 33(1-2):63-108. PubMed ID: 864687 [No Abstract] [Full Text] [Related]
17. Imaging membrane potential with voltage-sensitive dyes. Zochowski M; Wachowiak M; Falk CX; Cohen LB; Lam YW; Antic S; Zecevic D Biol Bull; 2000 Feb; 198(1):1-21. PubMed ID: 10707808 [TBL] [Abstract][Full Text] [Related]
18. Negative conductance and electrodiffusion in excitable membrane systems. Agin D Membranes; 1972; 1():249-65. PubMed ID: 4585225 [No Abstract] [Full Text] [Related]
19. Spectroscopic investigations of bovine lens crystallins. 2. Fluorescent probes for polar-apolar nature and sulfhydryl group accessibility. Andley UP; Liang JN; Chakrabarti B Biochemistry; 1982 Apr; 21(8):1853-8. PubMed ID: 7082651 [No Abstract] [Full Text] [Related]