These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10985686)

  • 21. Thalamic projections to areas 3a, 3b, and 4 in the sensorimotor cortex of the mature and infant macaque monkey.
    Darian-Smith C; Darian-Smith I
    J Comp Neurol; 1993 Sep; 335(2):173-99. PubMed ID: 8227513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of Neuronal Activity in the Motor Thalamus during GPi-DBS in the MPTP Nonhuman Primate Model of Parkinson's Disease.
    Muralidharan A; Zhang J; Ghosh D; Johnson MD; Baker KB; Vitek JL
    Brain Stimul; 2017; 10(1):126-138. PubMed ID: 27839724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial relationships between the terminations of somatic sensory motor pathways in the rostral brainstem of cats and monkeys. II. Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon.
    Berkley KJ
    J Comp Neurol; 1983 Oct; 220(2):229-51. PubMed ID: 6643728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discharges of intracerebellar nuclear cells in monkeys.
    Harvey RJ; Porter R; Rawson JA
    J Physiol; 1979 Dec; 297(0):559-80. PubMed ID: 119847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity properties and location of neurons in the motor thalamus that project to the cortical motor areas in monkeys.
    Kurata K
    J Neurophysiol; 2005 Jul; 94(1):550-66. PubMed ID: 15703228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What features of limb movements are encoded in the discharge of cerebellar neurons?
    Ebner TJ; Hewitt AL; Popa LS
    Cerebellum; 2011 Dec; 10(4):683-93. PubMed ID: 21203875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purkinje cell complex spike activity during voluntary motor learning: relationship to kinematics.
    Ojakangas CL; Ebner TJ
    J Neurophysiol; 1994 Dec; 72(6):2617-30. PubMed ID: 7897479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements.
    van Donkelaar P; Stein JF; Passingham RE; Miall RC
    J Neurophysiol; 1999 Aug; 82(2):934-45. PubMed ID: 10444688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiologic properties and somatotopic organization of the primate motor thalamus.
    Vitek JL; Ashe J; DeLong MR; Alexander GE
    J Neurophysiol; 1994 Apr; 71(4):1498-513. PubMed ID: 8035231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstimulation of movements from cerebellar-receiving, but not pallidal-receiving areas of the macaque thalamus under ketamine anaesthesia.
    Miall RC; Price S; Mason R; Passingham RE; Winter JL; Stein JF
    Exp Brain Res; 1998 Dec; 123(4):387-96. PubMed ID: 9870599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex.
    Matsuzaka Y; Tanji J
    J Neurophysiol; 1996 Oct; 76(4):2327-42. PubMed ID: 8899607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Movement-related inputs to intermediate cerebellum of the monkey.
    van Kan PL; Gibson AR; Houk JC
    J Neurophysiol; 1993 Jan; 69(1):74-94. PubMed ID: 8433135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of methods used to detect changes in neuronal discharge patterns.
    Churchward PR; Butler EG; Finkelstein DI; Aumann TD; Sudbury A; Horne MK
    J Neurosci Methods; 1997 Oct; 76(2):203-10. PubMed ID: 9350972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of human thalamus in the preparation of self-paced movement.
    Paradiso G; Cunic D; Saint-Cyr JA; Hoque T; Lozano AM; Lang AE; Chen R
    Brain; 2004 Dec; 127(Pt 12):2717-31. PubMed ID: 15329354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation.
    Dacre J; Colligan M; Clarke T; Ammer JJ; Schiemann J; Chamosa-Pino V; Claudi F; Harston JA; Eleftheriou C; Pakan JMP; Huang CC; Hantman AW; Rochefort NL; Duguid I
    Neuron; 2021 Jul; 109(14):2326-2338.e8. PubMed ID: 34146469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters.
    Mink JW; Thach WT
    J Neurophysiol; 1991 Feb; 65(2):301-29. PubMed ID: 2016643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variety of functional organization within the monkey motor cortex.
    Lemon RN
    J Physiol; 1981 Feb; 311():521-40. PubMed ID: 7264982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials.
    Timofeev I; Steriade M
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):153-68. PubMed ID: 9350626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cerebello-thalamo-cortical pathway. Topographical investigation at the unitary level in the cat.
    Rispal-Padel L; Grangetto A
    Exp Brain Res; 1977 May; 28(1-2):101-23. PubMed ID: 880997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.