BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 10985747)

  • 1. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid degradation of bacteriophage lambda O protein by ClpP/ClpX protease influences the lysis-versus-lysogenization decision of the phage under certain growth conditions of the host cells.
    Czyz A; Zielke R; Wegrzyn G
    Arch Virol; 2001 Aug; 146(8):1487-98. PubMed ID: 11676412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the preprimosome protects lambda O from RNA transcription-dependent proteolysis by ClpP/ClpX.
    Zylicz M; Liberek K; Wawrzynow A; Georgopoulos C
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15259-63. PubMed ID: 9860956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neither absence nor excess of lambda O initiator-digesting ClpXP protease affects lambda plasmid or phage replication in Escherichia coli.
    Szalewska A; Wegrzyn G; Taylor K
    Mol Microbiol; 1994 Aug; 13(3):469-74. PubMed ID: 7997163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone.
    Wawrzynow A; Wojtkowiak D; Marszalek J; Banecki B; Jonsen M; Graves B; Georgopoulos C; Zylicz M
    EMBO J; 1995 May; 14(9):1867-77. PubMed ID: 7743994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of heat shock-provoked disassembly of the coliphage lambda replication complex.
    Wegrzyn A; Herman-Antosiewicz A; Taylor K; Wegrzyn G
    J Bacteriol; 1998 May; 180(9):2475-83. PubMed ID: 9573201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease.
    Gonciarz-Swiatek M; Wawrzynow A; Um SJ; Learn BA; McMacken R; Kelley WL; Georgopoulos C; Sliekers O; Zylicz M
    J Biol Chem; 1999 May; 274(20):13999-4005. PubMed ID: 10318812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities.
    Gottesman S; Clark WP; de Crecy-Lagard V; Maurizi MR
    J Biol Chem; 1993 Oct; 268(30):22618-26. PubMed ID: 8226770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli.
    Wojtkowiak D; Georgopoulos C; Zylicz M
    J Biol Chem; 1993 Oct; 268(30):22609-17. PubMed ID: 8226769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switch from theta to sigma replication of bacteriophage lambda DNA: factors involved in the process and a model for its regulation.
    Narajczyk M; Barańska S; Wegrzyn A; Wegrzyn G
    Mol Genet Genomics; 2007 Jul; 278(1):65-74. PubMed ID: 17377819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli.
    Yoo SJ; Seol JH; Kang MS; Ha DB; Chung CH
    Biochem Biophys Res Commun; 1994 Sep; 203(2):798-804. PubMed ID: 8093059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein.
    Mhammedi-Alaoui A; Pato M; Gama MJ; Toussaint A
    Mol Microbiol; 1994 Mar; 11(6):1109-16. PubMed ID: 8022280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli.
    Weichart D; Querfurth N; Dreger M; Hengge-Aronis R
    J Bacteriol; 2003 Jan; 185(1):115-25. PubMed ID: 12486047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis.
    Nakano MM; Hajarizadeh F; Zhu Y; Zuber P
    Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of different-size transcripts from the clpP-clpX operon of Escherichia coli during carbon deprivation.
    Li C; Tao YP; Simon LD
    J Bacteriol; 2000 Dec; 182(23):6630-7. PubMed ID: 11073905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication of coliphage lambda DNA.
    Taylor K; Wegrzyn G
    FEMS Microbiol Rev; 1995 Aug; 17(1-2):109-19. PubMed ID: 7669336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of coliphage lambda O initiator protein from proteolysis in the assembly of the replication complex in vivo.
    Wegrzyn A; Wegrzyn G; Taylor K
    Virology; 1995 Feb; 207(1):179-84. PubMed ID: 7871725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.