These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10985824)

  • 61. Estimation of Distribution Parameters of Organic Solutes in Cloud Point Extraction.
    Szymanowski J; Apostoluk W
    J Colloid Interface Sci; 2000 Aug; 228(1):178-181. PubMed ID: 10882508
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant.
    Sun S; Inskeep WP; Boyd SA
    Environ Sci Technol; 1995 Apr; 29(4):903-13. PubMed ID: 22176397
    [No Abstract]   [Full Text] [Related]  

  • 63. Mass transfer of water-insoluble organic compound from octadecylsilyl-silica gel into water in the presence of a nonionic surfactant.
    Nakatani K; Miyanaga M; Kawasaki Y
    Anal Sci; 2011; 27(12):1253-6. PubMed ID: 22156256
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Real-time observation of solubilization-induced morphological change in surfactant aggregates adsorbed on a solid surface.
    Koizumi K; Akamatsu M; Sakai K; Sasaki S; Sakai H
    Chem Commun (Camb); 2017 Dec; 53(98):13172-13175. PubMed ID: 29177340
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Soil-water equilibria for nonionic organic compounds.
    Chiou CT; Peters LJ; Freed VH
    Science; 1981 Aug; 213(4508):684. PubMed ID: 17847481
    [No Abstract]   [Full Text] [Related]  

  • 66. Soil-water equilibria for nonionic organic compounds.
    Kyle BG
    Science; 1981 Aug; 213(4508):683. PubMed ID: 17847479
    [No Abstract]   [Full Text] [Related]  

  • 67. Long Stokes shifts and vibronic couplings in perfluorinated polyanilines.
    Dallas P; Rašović I; Puchtler T; Taylor RA; Porfyrakis K
    Chem Commun (Camb); 2017 Feb; 53(17):2602-2605. PubMed ID: 28230873
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The release of petroleum hydrocarbons from a saline-sodic soil by the new biosurfactant-producing strain of Bacillus sp.
    Kalvandi S; Garousin H; Pourbabaee AA; Farahbakhsh M
    Sci Rep; 2022 Nov; 12(1):19770. PubMed ID: 36396722
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Selective sorption of PAHs from TX100 solution by resin SP850: effects of TX100 concentrations and PAHs solubility.
    Zeng Y; Zhang M; Lin D; Yang K
    RSC Adv; 2021 Apr; 11(22):13530-13536. PubMed ID: 35423864
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Formulation of a Culture Medium to Optimize the Production of Lipopeptide Biosurfactant by a New Isolate of
    Kalvandi S; Garousin H; Pourbabaee AA; Alikhani HA
    Front Microbiol; 2022; 13():785985. PubMed ID: 35387088
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system.
    Wei J; Li J; Huang G; Wang X; Chen G; Zhao B
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18034-42. PubMed ID: 27255324
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil.
    Zhu H; Aitken MD
    Environ Sci Technol; 2010 Oct; 44(19):7260-5. PubMed ID: 20586488
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene.
    Jindrová E; Chocová M; Demnerová K; Brenner V
    Folia Microbiol (Praha); 2002; 47(2):83-93. PubMed ID: 12058403
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Organic compound distribution between nonionic surfactant solution and natural solids: applicability of a solution property parameter.
    Lee JF; Chang YT; Chao HP; Huang HC; Hsu MH
    J Hazard Mater; 2006 Feb; 129(1-3):282-9. PubMed ID: 16229944
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of surfactants on the distribution of organic compounds in the soil solid/water system.
    Lee JF; Hsu MH; Chao HP; Huang HC; Wang SP
    J Hazard Mater; 2004 Oct; 114(1-3):123-30. PubMed ID: 15511582
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Partitioning of hydrophobic organic compounds within soil-water-surfactant systems.
    Wang P; Keller AA
    Water Res; 2008 Apr; 42(8-9):2093-101. PubMed ID: 18067946
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review.
    Laha S; Tansel B; Ussawarujikulchai A
    J Environ Manage; 2009 Jan; 90(1):95-100. PubMed ID: 18838206
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.
    Müller G
    Chemosphere; 2003 Jul; 52(2):371-9. PubMed ID: 12738259
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influence of a Nonionic Surfactant (Triton X-100) on Contaminant Distribution between Water and Several Soil Solids.
    Lee JF; Liao PM; Kuo CC; Yang HT; Chiou CT
    J Colloid Interface Sci; 2000 Sep; 229(2):445-452. PubMed ID: 10985824
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.