BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 10985858)

  • 41. Shh, Fgf4 and Hoxd gene expression in the mouse limb mutant hypodactyly.
    Robertson KE; Tickle C; Darling SM
    Int J Dev Biol; 1997 Oct; 41(5):733-6. PubMed ID: 9415493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The regulation of MyoD gene expression: conserved elements mediate expression in embryonic axial muscle.
    Asakura A; Lyons GE; Tapscott SJ
    Dev Biol; 1995 Oct; 171(2):386-98. PubMed ID: 7556922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Hand1, Stra13 and Gcm1 transcription factors override FGF signaling to promote terminal differentiation of trophoblast stem cells.
    Hughes M; Dobric N; Scott IC; Su L; Starovic M; St-Pierre B; Egan SE; Kingdom JC; Cross JC
    Dev Biol; 2004 Jul; 271(1):26-37. PubMed ID: 15196947
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds.
    Zúñiga A; Haramis AP; McMahon AP; Zeller R
    Nature; 1999 Oct; 401(6753):598-602. PubMed ID: 10524628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Negative autoregulation of Mash1 expression in CNS development.
    Meredith A; Johnson JE
    Dev Biol; 2000 Jun; 222(2):336-46. PubMed ID: 10837123
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contractile activity of skeletal musculature involved in breathing is essential for normal lung cell differentiation, as revealed in Myf5-/-:MyoD-/- embryos.
    Inanlou MR; Kablar B
    Dev Dyn; 2005 Jul; 233(3):772-82. PubMed ID: 15844178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The epaxial-hypaxial subdivision of the avian somite.
    Cheng L; Alvares LE; Ahmed MU; El-Hanfy AS; Dietrich S
    Dev Biol; 2004 Oct; 274(2):348-69. PubMed ID: 15385164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential regulation of epaxial and hypaxial muscle development by paraxis.
    Wilson-Rawls J; Hurt CR; Parsons SM; Rawls A
    Development; 1999 Dec; 126(23):5217-29. PubMed ID: 10556048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Knowing chops from chuck: roasting myoD redundancy.
    Ordahl CP; Williams BA
    Bioessays; 1998 May; 20(5):357-62. PubMed ID: 9670808
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Myf5 and MyoD activation define independent myogenic compartments during embryonic development.
    Kablar B; Krastel K; Tajbakhsh S; Rudnicki MA
    Dev Biol; 2003 Jun; 258(2):307-18. PubMed ID: 12798290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation.
    Maves L; Waskiewicz AJ; Paul B; Cao Y; Tyler A; Moens CB; Tapscott SJ
    Development; 2007 Sep; 134(18):3371-82. PubMed ID: 17699609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An E box comprises a positional sensor for regional differences in skeletal muscle gene expression and methylation.
    Ceccarelli E; McGrew MJ; Nguyen T; Grieshammer U; Horgan D; Hughes SH; Rosenthal N
    Dev Biol; 1999 Sep; 213(1):217-29. PubMed ID: 10452859
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Persistent expression of MNF identifies myogenic stem cells in postnatal muscles.
    Garry DJ; Yang Q; Bassel-Duby R; Williams RS
    Dev Biol; 1997 Aug; 188(2):280-94. PubMed ID: 9268575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin.
    Wang Y; Schnegelsberg PN; Dausman J; Jaenisch R
    Nature; 1996 Feb; 379(6568):823-5. PubMed ID: 8587605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fine-scale transgenic mapping of the MyoD core enhancer: MyoD is regulated by distinct but overlapping mechanisms in myotomal and non-myotomal muscle lineages.
    Kucharczuk KL; Love CM; Dougherty NM; Goldhamer DJ
    Development; 1999 May; 126(9):1957-65. PubMed ID: 10101129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos.
    Kawakami Y; Esteban CR; Matsui T; Rodríguez-León J; Kato S; Izpisúa Belmonte JC
    Development; 2004 Oct; 131(19):4763-74. PubMed ID: 15358670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Target gene selectivity of the myogenic basic helix-loop-helix transcription factor myogenin in embryonic muscle.
    Davie JK; Cho JH; Meadows E; Flynn JM; Knapp JR; Klein WH
    Dev Biol; 2007 Nov; 311(2):650-64. PubMed ID: 17904117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth.
    Boulet AM; Moon AM; Arenkiel BR; Capecchi MR
    Dev Biol; 2004 Sep; 273(2):361-72. PubMed ID: 15328019
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterisation of hoxa gene expression in the chick limb bud in response to FGF.
    Vargesson N; Kostakopoulou K; Drossopoulou G; Papageorgiou S; Tickle C
    Dev Dyn; 2001 Jan; 220(1):87-90. PubMed ID: 11146510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice.
    Kratochwil K; Galceran J; Tontsch S; Roth W; Grosschedl R
    Genes Dev; 2002 Dec; 16(24):3173-85. PubMed ID: 12502739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.