These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1098599)

  • 1. Biosynthesis of sulphur amoni acids in Saccharomyces cerevisiae. I. Genetic analysis of leaky mutants of sulphite reductase.
    Zambonelli C; Mutinelli P
    Arch Microbiol; 1975 Mar; 102(3):247-51. PubMed ID: 1098599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae II. Analysis of suplhite-producing strains.
    Romano P; Zambonelli C; Soli MG
    Arch Microbiol; 1976 Jun; 108(2):211-5. PubMed ID: 776114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans.
    Toh-E A; Ohkusu M; Shimizu K; Ishiwada N; Watanabe A; Kamei K
    Curr Genet; 2018 Jun; 64(3):681-696. PubMed ID: 29159425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation.
    Thomas D; Barbey R; Henry D; Surdin-Kerjan Y
    J Gen Microbiol; 1992 Oct; 138(10):2021-8. PubMed ID: 1479340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed.
    Paszewski A; Ono BI
    Curr Genet; 1992 Oct; 22(4):273-5. PubMed ID: 1394507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.
    Chang EC; Kosman DJ
    J Bacteriol; 1990 Apr; 172(4):1840-5. PubMed ID: 2180907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of sulphite reductase activity and its response to assimilable nitrogen status in a commercial Saccharomyces cerevisiae wine yeast.
    Jiranek V; Langridge P; Henschke PA
    J Appl Bacteriol; 1996 Sep; 81(3):329-36. PubMed ID: 8810060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of resistance to sulphite in Saccharomyces cerevisiae.
    Casalone E; Colella CM; Daly S; Gallori E; Moriani L; Polsinelli M
    Curr Genet; 1992 Dec; 22(6):435-40. PubMed ID: 1473174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum.
    Dahl C
    Microbiology (Reading); 1996 Dec; 142 ( Pt 12)():3363-72. PubMed ID: 9004500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a sulfite reductase gene and new insights regarding the sulfur-containing amino acid metabolism in the basidiomycetous yeast Cryptococcus neoformans.
    Nguyen PT; Toh-E A; Nguyen NH; Imanishi-Shimizu Y; Watanabe A; Kamei K; Shimizu K
    Curr Genet; 2021 Feb; 67(1):115-128. PubMed ID: 33001274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae.
    Yoshida S; Imoto J; Minato T; Oouchi R; Kamada Y; Tomita M; Soga T; Yoshimoto H
    Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and relationships of mercury-resistant mutants and methionine auxotrophs of yeast.
    Singh A; Sherman F
    J Bacteriol; 1974 Jun; 118(3):911-8. PubMed ID: 4364332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway.
    De Vero L; Solieri L; Giudici P
    Lett Appl Microbiol; 2011 Nov; 53(5):572-5. PubMed ID: 21883319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae.
    Jacquemin-Faure I; Thomas D; Laporte J; Cibert C; Surdin-Kerjan Y
    Mol Gen Genet; 1994 Sep; 244(5):519-29. PubMed ID: 8078479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of sulphur metabolism in fungi.
    Brzywczy J; Sieńko M; Kucharska A; Paszewski A
    Yeast; 2002 Jan; 19(1):29-35. PubMed ID: 11754480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1.
    Donalies UE; Stahl U
    Yeast; 2002 Apr; 19(6):475-84. PubMed ID: 11921096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen sulfide synthesis in native Saccharomyces cerevisiae strains during alcoholic fermentations.
    Wang C; Liu M; Li Y; Zhang Y; Yao M; Qin Y; Liu Y
    Food Microbiol; 2018 Apr; 70():206-213. PubMed ID: 29173629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase.
    Sohn H; Kuriyama H
    Yeast; 2001 Jan; 18(2):125-35. PubMed ID: 11169755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection system for Saccharomyces cerevisiae with phenyl acrylic acid decarboxylase gene (PAD1) and sulphur efflux gene (SSU1) by multiplex PCR.
    Archana KM; Anu-Appaiah KA
    Arch Microbiol; 2018 Mar; 200(2):275-279. PubMed ID: 29038825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable isotope fractionation by Clostridium pasteurianum. 2. Regulation of sulfite reductases by sulfur amino acids and their influence on sulfur isotope fractionation during SO32- and SO42- reduction.
    Laishley EJ; Krouse HR
    Can J Microbiol; 1978 Jun; 24(6):716-24. PubMed ID: 667738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.