These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10986078)

  • 1. Toward interlocked molecules beyond catenanes and rotaxanes.
    Chang T; Heiss AM; Cantrill SJ; Fyfe MC; Pease AR; Rowan SJ; Stoddart JF; Williams DJ
    Org Lett; 2000 Sep; 2(19):2943-6. PubMed ID: 10986078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of macrocyclic polyether constitution upon ammonium ion/crown ether recognition processes.
    Cantrill SJ; Fulton DA; Heiss AM; Pease AR; Stoddart JF; White AJ; Williams DJ
    Chemistry; 2000 Jun; 6(12):2274-87. PubMed ID: 10926234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [3]rotaxanes composed of two dibenzo-24-crown-8 ether wheels and an azamacrocyclic complex.
    Woźny M; Więckowska A; Trzybiński D; Sutuła S; Domagała S; Woźniak K
    Dalton Trans; 2018 Nov; 47(44):15845-15856. PubMed ID: 30358785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and electrochemical formation of pseudorotaxanes composed of alkyl(ferrocenylmethyl)ammmonium and dibenzo[24]crown-8.
    Horie M; Suzaki Y; Osakada K
    Inorg Chem; 2005 Aug; 44(16):5844-53. PubMed ID: 16060638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination-driven self-assembly of cavity-cored multiple crown ether derivatives and poly[2]pseudorotaxanes.
    Ghosh K; Yang HB; Northrop BH; Lyndon MM; Zheng YR; Muddiman DC; Stang PJ
    J Am Chem Soc; 2008 Apr; 130(15):5320-34. PubMed ID: 18341280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the formation and tunable dissociation of a [2]pseudorotaxane formed by slippage approach.
    Leung KC; Lau KN; Wong WY
    Int J Mol Sci; 2015 Apr; 16(4):8254-65. PubMed ID: 25872145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operating molecular elevators.
    Badjic JD; Ronconi CM; Stoddart JF; Balzani V; Silvi S; Credi A
    J Am Chem Soc; 2006 Feb; 128(5):1489-99. PubMed ID: 16448119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative Self-Sorting: One-Pot Synthesis of a Hetero[4]rotaxane from a Daisy-Chain-Containing Hetero[4]pseudorotaxane.
    Rao SJ; Zhang Q; Ye XH; Gao C; Qu DH
    Chem Asian J; 2018 Apr; 13(7):815-821. PubMed ID: 29424064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzo-21-crown-7/secondary dialkylammonium salt [2]pseudorotaxane- and [2]rotaxane-type threaded structures.
    Zhang C; Li S; Zhang J; Zhu K; Li N; Huang F
    Org Lett; 2007 Dec; 9(26):5553-6. PubMed ID: 18047364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [2]Pseudorotaxanes, [2]rotaxanes and metal-organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels.
    Mercer DJ; Yacoub J; Zhu K; Loeb SK; Loeb SJ
    Org Biomol Chem; 2012 Aug; 10(30):6094-104. PubMed ID: 22581393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation, dynamic behavior, and chemical transformation of Pt complexes with a rotaxane-like structure.
    Suzaki Y; Osakada K
    Chem Asian J; 2006 Sep; 1(3):331-43. PubMed ID: 17441068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viologen-Based Rotaxanes from Dibenzo-30-crown-10.
    Wessels HR; Slebodnick C; Gibson HW
    J Am Chem Soc; 2018 Jun; 140(23):7358-7370. PubMed ID: 29775299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-assembly processing of [2]rotaxanes.
    Chiu SH; Rowan SJ; Cantrill SJ; Stoddart JF; White AJ; Williams DJ
    Chemistry; 2002 Nov; 8(22):5170-83. PubMed ID: 12613035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-State Molecular Shuttling of [2]Rotaxanes in Response to Acid/Base and Alkali-Metal Cation Stimuli.
    Kimura M; Mizuno T; Ueda M; Miyagawa S; Kawasaki T; Tokunaga Y
    Chem Asian J; 2017 Jun; 12(12):1381-1390. PubMed ID: 28409890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks.
    Zhao YL; Liu L; Zhang W; Sue CH; Li Q; Miljanić OS; Yaghi OM; Stoddart JF
    Chemistry; 2009 Dec; 15(48):13356-80. PubMed ID: 19946906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of photoswitchable rotaxanes and catenanes containing dithienylethene fragments.
    Li Z; Han X; Chen H; Wu D; Hu F; Liu SH; Yin J
    Org Biomol Chem; 2015 Jul; 13(26):7313-22. PubMed ID: 26059864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane.
    Luo QF; Zhu L; Rao SJ; Li H; Miao Q; Qu DH
    J Org Chem; 2015 May; 80(9):4704-9. PubMed ID: 25874382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halogen- and hydrogen-bonding catenanes for halide-anion recognition.
    Gilday LC; Beer PD
    Chemistry; 2014 Jul; 20(27):8379-85. PubMed ID: 24888346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Esters as Pseudostoppers for Slippage Synthesis of [2]Pseudorotaxane Building Blocks: A Straightforward Route to Multi-Interlocked Molecular Machines.
    Legigan T; Riss-Yaw B; Clavel C; Coutrot F
    Chemistry; 2016 Jun; 22(26):8835-47. PubMed ID: 27239975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bond templated synthesis of catenanes and rotaxanes from a single isophthalic acid derivative.
    Barlow SR; Akien GR; Evans NH
    Org Biomol Chem; 2023 Jan; 21(2):402-414. PubMed ID: 36525263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.