BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 10986118)

  • 1. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli.
    Viswanathan M; Lacirignola JJ; Hurley RL; Lovett ST
    J Mol Biol; 2000 Sep; 302(3):553-64. PubMed ID: 10986118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cis and trans-acting effects on a mutational hotspot involving a replication template switch.
    Dutra BE; Lovett ST
    J Mol Biol; 2006 Feb; 356(2):300-11. PubMed ID: 16376936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leading strand specific spontaneous mutation corrects a quasipalindrome by an intermolecular strand switch mechanism.
    Rosche WA; Trinh TQ; Sinden RR
    J Mol Biol; 1997 Jun; 269(2):176-87. PubMed ID: 9191063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli.
    Yoshiyama K; Higuchi K; Matsumura H; Maki H
    J Mol Biol; 2001 Apr; 307(5):1195-206. PubMed ID: 11292335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork.
    Karthikeyan R; Vonarx EJ; Straffon AF; Simon M; Faye G; Kunz BA
    J Mol Biol; 2000 Jun; 299(2):405-19. PubMed ID: 10860748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primer-template misalignments during leading strand DNA synthesis account for the most frequent spontaneous mutations in a quasipalindromic region in Escherichia coli.
    Rosche WA; Ripley LS; Sinden RR
    J Mol Biol; 1998 Dec; 284(3):633-46. PubMed ID: 9826504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous hotspot mutations resistant to mismatch correction in Escherichia coli: transcription-dependent mutagenesis involving template-switching mechanisms.
    Yoshiyama K; Maki H
    J Mol Biol; 2003 Mar; 327(1):7-18. PubMed ID: 12614604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli.
    Trinh TQ; Sinden RR
    Nature; 1991 Aug; 352(6335):544-7. PubMed ID: 1865910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into mutagenesis using Escherichia coli chromosomal lacZ strains that enable detection of a wide spectrum of mutational events.
    Seier T; Padgett DR; Zilberberg G; Sutera VA; Toha N; Lovett ST
    Genetics; 2011 Jun; 188(2):247-62. PubMed ID: 21441210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli mutator (Delta)polA is defective in base mismatch correction: the nature of in vivo DNA replication errors.
    Tago Y; Imai M; Ihara M; Atofuji H; Nagata Y; Yamamoto K
    J Mol Biol; 2005 Aug; 351(2):299-308. PubMed ID: 16005896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution rates of genes on leading and lagging DNA strands.
    Szczepanik D; Mackiewicz P; Kowalczuk M; Gierlik A; Nowicka A; Dudek MR; Cebrat S
    J Mol Evol; 2001 May; 52(5):426-33. PubMed ID: 11443346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSB recruitment of Exonuclease I aborts template-switching in Escherichia coli.
    Laranjo LT; Gross SJ; Zeiger DM; Lovett ST
    DNA Repair (Amst); 2017 Sep; 57():12-16. PubMed ID: 28605670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel, 11 nucleotide variant of chi, chi*: one of a class of sequences defining the Escherichia coli recombination hotspot chi.
    Arnold DA; Handa N; Kobayashi I; Kowalczykowski SC
    J Mol Biol; 2000 Jul; 300(3):469-79. PubMed ID: 10884344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability.
    Parniewski P; Jaworski A; Wells RD; Bowater RP
    J Mol Biol; 2000 Jun; 299(4):865-74. PubMed ID: 10843843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks.
    Jones JM; Nakai H
    J Mol Biol; 2001 Oct; 312(5):935-47. PubMed ID: 11580240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III.
    Hadi MZ; Ginalski K; Nguyen LH; Wilson DM
    J Mol Biol; 2002 Feb; 316(3):853-66. PubMed ID: 11866537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein.
    Höss M; Robins P; Naven TJ; Pappin DJ; Sgouros J; Lindahl T
    EMBO J; 1999 Jul; 18(13):3868-75. PubMed ID: 10393201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic DNA fragments that affect Escherichia coli mutational pathways.
    Yang H; To KH; Aguila SJ; Miller JH
    Mol Microbiol; 2006 Aug; 61(4):960-77. PubMed ID: 16879649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Induction of repetitive nucleotide sequences. The probable mechanisms of genome evolution and gene conversion].
    Salganik RI; Mazin AV; Dianov GL; Ovchinnikova LP
    Genetika; 1984 Aug; 20(8):1244-54. PubMed ID: 6386600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.