These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10986124)
1. Crystal structure of a dimeric archaeal splicing endonuclease. Li H; Abelson J J Mol Biol; 2000 Sep; 302(3):639-48. PubMed ID: 10986124 [TBL] [Abstract][Full Text] [Related]
2. RNA-protein interactions of an archaeal homotetrameric splicing endoribonuclease with an exceptional evolutionary history. Lykke-Andersen J; Garrett RA EMBO J; 1997 Oct; 16(20):6290-300. PubMed ID: 9321408 [TBL] [Abstract][Full Text] [Related]
3. Structure determination of a truncated dimeric splicing endonuclease in pseudo-face-centered space group P2(1)2(1)2. Zhang Y; Li H Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):447-52. PubMed ID: 14993668 [TBL] [Abstract][Full Text] [Related]
4. Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus. Törö I; Basquin J; Teo-Dreher H; Suck D J Mol Biol; 2002 Jun; 320(1):129-42. PubMed ID: 12079339 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI. Ichiyanagi K; Ishino Y; Ariyoshi M; Komori K; Morikawa K J Mol Biol; 2000 Jul; 300(4):889-901. PubMed ID: 10891276 [TBL] [Abstract][Full Text] [Related]
6. Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin. Gallagher DT; Monbouquette HG; Schröder I; Robinson H; Holden MJ; Smith NN J Mol Biol; 2004 Sep; 342(1):119-30. PubMed ID: 15313611 [TBL] [Abstract][Full Text] [Related]
7. A conserved lysine residue in the crenarchaea-specific loop is important for the crenarchaeal splicing endonuclease activity. Okuda M; Shiba T; Inaoka DK; Kita K; Kurisu G; Mineki S; Harada S; Watanabe Y; Yoshinari S J Mol Biol; 2011 Jan; 405(1):92-104. PubMed ID: 21050862 [TBL] [Abstract][Full Text] [Related]
8. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805 [TBL] [Abstract][Full Text] [Related]
9. Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus. Schmiedel R; Kuettner EB; Keim A; Sträter N; Greiner-Stöffele T DNA Repair (Amst); 2009 Feb; 8(2):219-31. PubMed ID: 19015049 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. Silva GH; Dalgaard JZ; Belfort M; Van Roey P J Mol Biol; 1999 Mar; 286(4):1123-36. PubMed ID: 10047486 [TBL] [Abstract][Full Text] [Related]
11. Unusual evolutionary history of the tRNA splicing endonuclease EndA: relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases. Bujnicki JM; Rychlewski L Protein Sci; 2001 Mar; 10(3):656-60. PubMed ID: 11344334 [TBL] [Abstract][Full Text] [Related]
12. Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding. Chen CK; Lee GC; Ko TP; Guo RT; Huang LM; Liu HJ; Ho YF; Shaw JF; Wang AH J Mol Biol; 2009 Jul; 390(4):672-85. PubMed ID: 19447113 [TBL] [Abstract][Full Text] [Related]
13. Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA complex from the archaeon Methanococcus jannaschii. Tishchenko S; Nikulin A; Fomenkova N; Nevskaya N; Nikonov O; Dumas P; Moine H; Ehresmann B; Ehresmann C; Piendl W; Lamzin V; Garber M; Nikonov S J Mol Biol; 2001 Aug; 311(2):311-24. PubMed ID: 11478863 [TBL] [Abstract][Full Text] [Related]
14. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus. Stieglitz KA; Yang H; Roberts MF; Stec B Biochemistry; 2005 Jan; 44(1):213-24. PubMed ID: 15628862 [TBL] [Abstract][Full Text] [Related]
15. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication. Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. LaRonde-LeBlanc N; Wlodawer A Structure; 2004 Sep; 12(9):1585-94. PubMed ID: 15341724 [TBL] [Abstract][Full Text] [Related]
18. The dawn of dominance by the mature domain in tRNA splicing. Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12300-5. PubMed ID: 17636125 [TBL] [Abstract][Full Text] [Related]
19. RNA recognition and cleavage by a splicing endonuclease. Xue S; Calvin K; Li H Science; 2006 May; 312(5775):906-10. PubMed ID: 16690865 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure and evolution of a transfer RNA splicing enzyme. Li H; Trotta CR; Abelson J Science; 1998 Apr; 280(5361):279-84. PubMed ID: 9535656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]