BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 10986272)

  • 1. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation.
    Yethon JA; Vinogradov E; Perry MB; Whitfield C
    J Bacteriol; 2000 Oct; 182(19):5620-3. PubMed ID: 10986272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane Interaction of the Glycosyltransferase WaaG.
    Liebau J; Pettersson P; Szpryngiel S; Mäler L
    Biophys J; 2015 Aug; 109(3):552-63. PubMed ID: 26244737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of waaY, waaQ, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane.
    Yethon JA; Heinrichs DE; Monteiro MA; Perry MB; Whitfield C
    J Biol Chem; 1998 Oct; 273(41):26310-6. PubMed ID: 9756860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies To Overcome Severe Outer Membrane Permeability Defects in Escherichia coli.
    Falchi FA; Maccagni EA; Puccio S; Peano C; De Castro C; Palmigiano A; Garozzo D; Martorana AM; Polissi A; Dehò G; Sperandeo P
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29109183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12.
    Parker CT; Kloser AW; Schnaitman CA; Stein MA; Gottesman S; Gibson BW
    J Bacteriol; 1992 Apr; 174(8):2525-38. PubMed ID: 1348243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four critical aspartic acid residues potentially involved in the catalytic mechanism of Escherichia coli K-12 WaaR.
    Shibayama K; Ohsuka S; Sato K; Yokoyama K; Horii T; Ohta M
    FEMS Microbiol Lett; 1999 May; 174(1):105-9. PubMed ID: 10234827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion.
    Genevaux P; Bauda P; DuBow MS; Oudega B
    Arch Microbiol; 1999 Jul; 172(1):1-8. PubMed ID: 10398745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive effect of tolC and rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coli K-12.
    Fralick JA; Burns-Keliher LL
    J Bacteriol; 1994 Oct; 176(20):6404-6. PubMed ID: 7929014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of galacturonic acid in outer membrane stability in Klebsiella pneumoniae.
    Frirdich E; Bouwman C; Vinogradov E; Whitfield C
    J Biol Chem; 2005 Jul; 280(30):27604-12. PubMed ID: 15929980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro assembly of the outer core of the lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium.
    Qian J; Garrett TA; Raetz CR
    Biochemistry; 2014 Mar; 53(8):1250-62. PubMed ID: 24479701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecules containing hetero-bicyclic ring systems compete with UDP-Glc for binding to WaaG glycosyltransferase.
    Landström J; Persson K; Rademacher C; Lundborg M; Wakarchuk W; Peters T; Widmalm G
    Glycoconj J; 2012 Oct; 29(7):491-502. PubMed ID: 22711644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal and plasmid-encoded enzymes are required for assembly of the R3-type core oligosaccharide in the lipopolysaccharide of Escherichia coli O157:H7.
    Kaniuk NA; Vinogradov E; Li J; Monteiro MA; Whitfield C
    J Biol Chem; 2004 Jul; 279(30):31237-50. PubMed ID: 15155763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation through RfaH contributes to intestinal colonization by Escherichia coli.
    Nagy G; Dobrindt U; Grozdanov L; Hacker J; Emody L
    FEMS Microbiol Lett; 2005 Mar; 244(1):173-80. PubMed ID: 15727837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region.
    Klein G; Müller-Loennies S; Lindner B; Kobylak N; Brade H; Raina S
    J Biol Chem; 2013 Mar; 288(12):8111-8127. PubMed ID: 23372159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose.
    Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW
    Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli.
    Liebau J; Fu B; Brown C; Mäler L
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):683-690. PubMed ID: 29225173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The assembly system for the lipopolysaccharide R2 core-type of Escherichia coli is a hybrid of those found in Escherichia coli K-12 and Salmonella enterica. Structure and function of the R2 WaaK and WaaL homologs.
    Heinrichs DE; Monteiro MA; Perry MB; Whitfield C
    J Biol Chem; 1998 Apr; 273(15):8849-59. PubMed ID: 9535865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4.
    Martinez-Fleites C; Proctor M; Roberts S; Bolam DN; Gilbert HJ; Davies GJ
    Chem Biol; 2006 Nov; 13(11):1143-52. PubMed ID: 17113996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of a novel 3-deoxy-D-manno-oct-2-ulosonic acid-containing outer core oligosaccharide in the lipopolysaccharide of Klebsiella pneumoniae.
    Frirdich E; Vinogradov E; Whitfield C
    J Biol Chem; 2004 Jul; 279(27):27928-40. PubMed ID: 15090547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant.
    Reynolds CM; Kalb SR; Cotter RJ; Raetz CR
    J Biol Chem; 2005 Jun; 280(22):21202-11. PubMed ID: 15795227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.