BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10986284)

  • 1. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells.
    Morikawa W; Yamamoto K; Ishikawa S; Takemoto S; Ono M; Fukushi Ji; Naito S; Nozaki C; Iwanaga S; Kuwano M
    J Biol Chem; 2000 Dec; 275(49):38912-20. PubMed ID: 10986284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New functional aspects of cathepsin D and cathepsin E.
    Tsukuba T; Okamoto K; Yasuda Y; Morikawa W; Nakanishi H; Yamamoto K
    Mol Cells; 2000 Dec; 10(6):601-11. PubMed ID: 11211863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin.
    Gately S; Twardowski P; Stack MS; Patrick M; Boggio L; Cundiff DL; Schnaper HW; Madison L; Volpert O; Bouck N; Enghild J; Kwaan HC; Soff GA
    Cancer Res; 1996 Nov; 56(21):4887-90. PubMed ID: 8895739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accumulation of angiostatin-like fragments in human prostate carcinoma.
    Migita T; Oda Y; Naito S; Morikawa W; Kuwano M; Tsuneyoshi M
    Clin Cancer Res; 2001 Sep; 7(9):2750-6. PubMed ID: 11555588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural requirements of procathepsin D activation and maturation.
    Richo GR; Conner GE
    J Biol Chem; 1994 May; 269(20):14806-12. PubMed ID: 8182087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms and kinetics of procathepsin D activation.
    Wittlin S; Rösel J; Hofmann F; Stover DR
    Eur J Biochem; 1999 Oct; 265(1):384-93. PubMed ID: 10491196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin.
    Gately S; Twardowski P; Stack MS; Cundiff DL; Grella D; Castellino FJ; Enghild J; Kwaan HC; Lee F; Kramer RA; Volpert O; Bouck N; Soff GA
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10868-72. PubMed ID: 9380726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen.
    Heidtmann HH; Nettelbeck DM; Mingels A; Jäger R; Welker HG; Kontermann RE
    Br J Cancer; 1999 Dec; 81(8):1269-73. PubMed ID: 10604721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Procathepsin D cannot autoactivate to cathepsin D at acid pH.
    Larsen LB; Boisen A; Petersen TE
    FEBS Lett; 1993 Mar; 319(1-2):54-8. PubMed ID: 8454061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-activated insulin-like growth factor binding protein protease activity of cathepsin D in normal and malignant prostatic epithelial cells and seminal plasma.
    Nunn SE; Peehl DM; Cohen P
    J Cell Physiol; 1997 May; 171(2):196-204. PubMed ID: 9130467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolytic activation of human procathepsin D.
    Richo G; Conner GE
    Adv Exp Med Biol; 1991; 306():289-96. PubMed ID: 1812719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclooxygenase-2 overexpression inhibits cathepsin D-mediated cleavage of plasminogen to the potent antiangiogenic factor angiostatin.
    Perchick GB; Jabbour HN
    Endocrinology; 2003 Dec; 144(12):5322-8. PubMed ID: 12970159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophage formation of angiostatin during inflammation. A byproduct of the activation of plasminogen.
    Falcone DJ; Khan KM; Layne T; Fernandes L
    J Biol Chem; 1998 Nov; 273(47):31480-5. PubMed ID: 9813061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin.
    Stathakis P; Lay AJ; Fitzgerald M; Schlieker C; Matthias LJ; Hogg PJ
    J Biol Chem; 1999 Mar; 274(13):8910-6. PubMed ID: 10085135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of cathepsin B, secreted by a colorectal cancer cell line requires low pH and is mediated by cathepsin D.
    van der Stappen JW; Williams AC; Maciewicz RA; Paraskeva C
    Int J Cancer; 1996 Aug; 67(4):547-54. PubMed ID: 8759615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiostatin generation by human tumor cell lines: involvement of plasminogen activators.
    Westphal JR; Van't Hullenaar R; Geurts-Moespot A; Sweep FC; Verheijen JH; Bussemakers MM; Askaa J; Clemmensen I; Eggermont AA; Ruiter DJ; De Waal RM
    Int J Cancer; 2000 Jun; 86(6):760-7. PubMed ID: 10842188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-activation of recombinant human lysosomal procathepsin D at a newly engineered cleavage junction, "short" pseudocathepsin D.
    Beyer BM; Dunn BM
    J Biol Chem; 1996 Jun; 271(26):15590-6. PubMed ID: 8663051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential production of angiostatin by concomitant antitumoral resistance-inducing cancer cells.
    Binda MM; Matar P; González AD; Rozados VR; Gervasoni SI; Scharovsky OG; Bonfil RD
    Int J Cancer; 2002 Jul; 100(1):14-21. PubMed ID: 12115581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of angiostatin in the spontaneous bone and prostate cancers of pet dogs.
    Pirie-Shepherd SR; Coffman KT; Resnick D; Chan R; Kisker O; Folkman J; Waters DJ
    Biochem Biophys Res Commun; 2002 Apr; 292(4):886-91. PubMed ID: 11944897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-beta 1 inhibits generation of angiostatin by human pancreatic cancer cells.
    O'Mahony CA; Albo D; Tuszynski GP; Berger DH
    Surgery; 1998 Aug; 124(2):388-93. PubMed ID: 9706163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.