These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Filament compliance and tension transients in muscle. Huxley AF; Tideswell S J Muscle Res Cell Motil; 1996 Aug; 17(4):507-11. PubMed ID: 8884605 [TBL] [Abstract][Full Text] [Related]
23. What makes skeletal muscle striated? Discoveries in the endosarcomeric and exosarcomeric cytoskeleton. Rall JA Adv Physiol Educ; 2018 Dec; 42(4):672-684. PubMed ID: 30431326 [TBL] [Abstract][Full Text] [Related]
24. Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Sosa H; Popp D; Ouyang G; Huxley HE Biophys J; 1994 Jul; 67(1):283-92. PubMed ID: 7918996 [TBL] [Abstract][Full Text] [Related]
25. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Littlefield R; Fowler VM Annu Rev Cell Dev Biol; 1998; 14():487-525. PubMed ID: 9891791 [TBL] [Abstract][Full Text] [Related]
26. Structure and function of myosin filaments. Craig R; Woodhead JL Curr Opin Struct Biol; 2006 Apr; 16(2):204-12. PubMed ID: 16563742 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional structure of the Z band in a normal mammalian skeletal muscle. Schroeter JP; Bretaudiere JP; Sass RL; Goldstein MA J Cell Biol; 1996 May; 133(3):571-83. PubMed ID: 8636232 [TBL] [Abstract][Full Text] [Related]
30. Response of equatorial x-ray reflections and stiffness to altered sarcomere length and myofilament lattice spacing in relaxed skinned cardiac muscle. Martyn DA; Adhikari BB; Regnier M; Gu J; Xu S; Yu LC Biophys J; 2004 Feb; 86(2):1002-11. PubMed ID: 14747335 [TBL] [Abstract][Full Text] [Related]
31. Titanic protein gives muscles structure and bounce. Barinaga M Science; 1995 Oct; 270(5234):236. PubMed ID: 7569971 [No Abstract] [Full Text] [Related]
32. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. Bang ML; Li X; Littlefield R; Bremner S; Thor A; Knowlton KU; Lieber RL; Chen J J Cell Biol; 2006 Jun; 173(6):905-16. PubMed ID: 16769824 [TBL] [Abstract][Full Text] [Related]
33. Extensibility in the titin molecule and its relation to muscle elasticity. Tskhovrebova L; Trinick J Adv Exp Med Biol; 2000; 481():163-73; discussion 174-8. PubMed ID: 10987072 [TBL] [Abstract][Full Text] [Related]
34. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977 [TBL] [Abstract][Full Text] [Related]
36. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding. Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214 [TBL] [Abstract][Full Text] [Related]
37. Intensity changes of actin-based layer lines from frog skeletal muscles during an isometric contraction. Wakabayashi K; Ueno Y; Amemiya Y; Tanaka H Adv Exp Med Biol; 1988; 226():353-67. PubMed ID: 3261487 [TBL] [Abstract][Full Text] [Related]
38. The force-length relationship of mechanically isolated sarcomeres. Herzog W; Joumaa V; Leonard TR Adv Exp Med Biol; 2010; 682():141-61. PubMed ID: 20824524 [TBL] [Abstract][Full Text] [Related]
39. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction. Butkevich E; Bodensiek K; Fakhri N; von Roden K; Schaap IAT; Majoul I; Schmidt CF; Klopfenstein DR Nat Commun; 2015 Jul; 6():7523. PubMed ID: 26146072 [TBL] [Abstract][Full Text] [Related]
40. Lateral force transmission across costameres in skeletal muscle. Bloch RJ; Gonzalez-Serratos H Exerc Sport Sci Rev; 2003 Apr; 31(2):73-8. PubMed ID: 12715970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]