These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10987959)

  • 1. Synthesis and reactivity of dipole-stabilized but unchelated alpha-aminoorganolithiums.
    Iula DM; Gawley RE
    J Org Chem; 2000 Sep; 65(19):6196-201. PubMed ID: 10987959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Barrier to enantiomerization of unstabilized, chelated, and dipole-stabilized 2-lithiopyrrolidines.
    Ashweek NJ; Brandt P; Coldham I; Dufour S; Gawley RE; Haeffner F; Klein R; Sanchez-Jimenez G
    J Am Chem Soc; 2005 Jan; 127(1):449-57. PubMed ID: 15631496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and reactivity of conformationally locked alpha-aminoorganostannanes and alpha-aminoorganolithiums. Discovery of a surprising configurational requirement for transmetalation.
    Chambournier G; Gawley RE
    Org Lett; 2000 Jun; 2(11):1561-4. PubMed ID: 10841479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and utility of tertiary alpha-aminoorganolithium reagents.
    Wolckenhauer SA; Rychnovsky SD
    Org Lett; 2004 Aug; 6(16):2745-8. PubMed ID: 15281759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diastereoselectivity of polar and radical couplings in electrophilic substitutions of rigid 2-lithio-N-methylpyrrolidines.
    Gawley RE; Eddings DB; Santiago M; Vicic DA
    Org Biomol Chem; 2006 Dec; 4(23):4285-91. PubMed ID: 17102873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of enantiomerically enriched α-aminoorganostannanes and their applications in stereoselective synthesis.
    Coeffard V; Beaudet I; Quintard JP; Le Grognec E
    Chirality; 2010 Nov; 22(10):864-9. PubMed ID: 20845429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry of N-Boc-N-tert-butylthiomethyl-protected alpha-aminoorganostannanes: diastereoselective synthesis of primary beta-amino alcohols from alpha-aminoorganostannanes.
    Ncube A; Park SB; Chong JM
    J Org Chem; 2002 May; 67(11):3625-36. PubMed ID: 12027673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical investigation into the inversion barrier of dipole-stabilized alpha-aminoorganolithiums.
    Haeffner F; Brandt P; Gawley RE
    Org Lett; 2002 Jun; 4(12):2101-4. PubMed ID: 12049528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and electrophile trapping of N-Boc-2-lithio-2-azetine: synthesis of 2-substituted 2-azetines.
    Hodgson DM; Pearson CI; Kazmi M
    Org Lett; 2014 Feb; 16(3):856-9. PubMed ID: 24410016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A relative organolithium stability scale derived from tin-lithium exchange equilibria. Substituent effects on the stability of alpha-oxy- and alpha-aminoorganolithium compounds.
    Graña P; Paleo MR; Sardina FJ
    J Am Chem Soc; 2002 Oct; 124(42):12511-4. PubMed ID: 12381194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and reactivity of versatile alpha-amino ketones.
    Yu L; Kokai A; Yudin AK
    J Org Chem; 2007 Mar; 72(5):1737-41. PubMed ID: 17256911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and experiment reveal an unexpected stereoelectronic effect on conformation and scalar couplings of alpha-aminoorganostannanes, with possible relevance to the tin-lithium exchange reaction.
    Santiago M; Low E; Chambournier G; Gawley RE
    J Org Chem; 2003 Oct; 68(22):8480-4. PubMed ID: 14575474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of the protein cutting reagent iron (S)-1-(p-bromoacetamidobenzyl)ethylenediaminetetraacetate and conjugation to cysteine side chains.
    Greiner DP; Miyake R; Moran JK; Jones AD; Negishi T; Ishihama A; Meares CF
    Bioconjug Chem; 1997; 8(1):44-8. PubMed ID: 9026034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of novel tellurium containing analogues of choline and acetylcholine and their quantitation by pyrolysis-gas chromatography-mass spectrometry.
    Harris SE; Silks LA; Dunlap RB; Odom JD; Kosh JW
    J Chromatogr A; 1993 Dec; 657(2):395-404. PubMed ID: 8130881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metalated nitriles: organolithium, -magnesium, and -copper exchange of alpha-halonitriles.
    Fleming FF; Zhang Z; Liu W; Knochel P
    J Org Chem; 2005 Mar; 70(6):2200-5. PubMed ID: 15760206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithio siloles: facile synthesis and applications.
    Wang C; Luo Q; Sun H; Guo X; Xi Z
    J Am Chem Soc; 2007 Mar; 129(11):3094-5. PubMed ID: 17316008
    [No Abstract]   [Full Text] [Related]  

  • 17. The synthesis of homoallylic amines utilizing a cuprate-based 1,2-metalate rearrangement.
    Neipp CE; Humphrey JM; Martin SF
    J Org Chem; 2001 Jan; 66(2):531-7. PubMed ID: 11429825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation, structure and reactivity of tertiary organolithium reagents.
    Perry MA; Rychnovsky SD
    Nat Prod Rep; 2015 Apr; 32(4):517-33. PubMed ID: 25475042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of mono- and geminal dimetalated carbanions of bis(phenylsulfonyl)methane using alkali metal bases and structural comparisons with lithiated bis(phenylsulfonyl)imides.
    MacDougall DJ; Kennedy AR; Noll BC; Henderson KW
    Dalton Trans; 2005 Jun; (12):2084-91. PubMed ID: 15957047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile preparation of allylzinc species from allylboronates and zinc amide via a boron-to-zinc exchange process and their reactions with carbonyl compounds, imines and hydrazones.
    Cui Y; Yamashita Y; Kobayashi S
    Chem Commun (Camb); 2012 Oct; 48(83):10319-21. PubMed ID: 22984692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.