BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10988066)

  • 1. Evidence that the reactivity of the martian soil is due to superoxide ions.
    Yen AS; Kim SS; Hecht MH; Frant MS; Murray B
    Science; 2000 Sep; 289(5486):1909-12. PubMed ID: 10988066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment.
    Levin GV; Straat PA
    Astrobiology; 2016 Oct; 16(10):798-810. PubMed ID: 27626510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organics on Mars?
    ten Kate IL
    Astrobiology; 2010; 10(6):589-603. PubMed ID: 20735250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory investigations of Mars: chemical and spectroscopic characteristics of a suite of clays as Mars soil analogs.
    Banin A; Carle GC; Chang S; Coyne LM; Orenberg JB; Scattergood TW
    Orig Life Evol Biosph; 1988; 18():239-65. PubMed ID: 11538359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars.
    Quinn R; Orenberg J
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4611-8. PubMed ID: 11539578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perchlorate radiolysis on Mars and the origin of martian soil reactivity.
    Quinn RC; Martucci HF; Miller SR; Bryson CE; Grunthaner FJ; Grunthaner PJ
    Astrobiology; 2013 Jun; 13(6):515-20. PubMed ID: 23746165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupled soil-atmosphere model of H2O2 on Mars.
    Bullock MA; Stoker CR; McKay CP; Zent AP
    Icarus; 1994 Jan; 107(1):142-54. PubMed ID: 11539124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials.
    Bishop JL; Pieters CM; Burns RG
    Geochim Cosmochim Acta; 1993; 57():4583-95. PubMed ID: 11539454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxides and the survivability of microorganisms on the surface of Mars.
    Mancinelli RL
    Adv Space Res; 1989; 9(6):191-5. PubMed ID: 11537371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues.
    Georgiou CD; Zisimopoulos D; Kalaitzopoulou E; Quinn RC
    Astrobiology; 2017 Apr; 17(4):319-336. PubMed ID: 28418706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of microorganisms to a simulated Martian environment.
    Hawrylewicz EJ; Hagen CA; Ehrlich R
    Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic decomposition of carboxylated molecules on light-exposed martian regolith and its relation to methane production on Mars.
    Shkrob IA; Chemerisov SD; Marin TW
    Astrobiology; 2010 May; 10(4):425-36. PubMed ID: 20528197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nanophase iron mineral(s) in Mars soil.
    Banin A; Ben-Shlomo T; Margulies L; Blake DF; Mancinelli RL; Gehring AU
    J Geophys Res; 1993 Nov; 98(E11):20,831-53. PubMed ID: 11539182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials.
    Bishop JL; Pieters CM; Burns RG; Edwards JO; Mancinelli RL; Fröschl H
    Icarus; 1995 Sep; 117(1):101-19. PubMed ID: 11538594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mars oxidant experiment (MOx) for Mars '96.
    McKay CP; Grunthaner FJ; Lane AL; Herring M; Bartman RK; Ksendzov A; Manning CM; Lamb JL; Williams RM; Ricco AJ; Butler MA; Murray BC; Quinn RC; Zent AP; Klein HP; Levin GV
    Planet Space Sci; 1998; 46(6-7):769-77. PubMed ID: 11541819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Detection of organic compounds on Mars].
    Kobayashi K
    Biol Sci Space; 1997 Mar; 11(1):13-21. PubMed ID: 11540350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions.
    Kerney KR; Schuerger AC
    Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.
    Keppler F; Vigano I; McLeod A; Ott U; Früchtl M; Röckmann T
    Nature; 2012 May; 486(7401):93-6. PubMed ID: 22678286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemical activities of the Viking biology experiments and the arguments for the presence of superoxides, peroxides, gamma-Fe2O3 and carbon suboxide polymer in the Martian soil.
    Oyama VI; Berdahl BJ; Woeller F; Lehwalt M
    Life Sci Space Res; 1978; 16():3-8. PubMed ID: 11965660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of Martian surface chemistry.
    Oyama VI; Berdahl BJ
    J Mol Evol; 1979 Dec; 14(1-3):199-210. PubMed ID: 230358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.