BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10988285)

  • 1. A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta -agonists.
    Chu G; Lester JW; Young KB; Luo W; Zhai J; Kranias EG
    J Biol Chem; 2000 Dec; 275(49):38938-43. PubMed ID: 10988285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interplay between dual site phospholambam phosphorylation: insights from genetically altered mouse models.
    Chu G; Kranias EG
    Basic Res Cardiol; 2002; 97 Suppl 1():I43-8. PubMed ID: 12479233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes.
    Hagemann D; Kuschel M; Kuramochi T; Zhu W; Cheng H; Xiao RP
    J Biol Chem; 2000 Jul; 275(29):22532-6. PubMed ID: 10825152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants.
    Said M; Vittone L; Mundina-Weilenmann C; Ferrero P; Kranias EG; Mattiazzi A
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1198-205. PubMed ID: 12763747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ser16-, but not Thr17-phosphorylation of phospholamban influences frequency-dependent force generation in human myocardium.
    Brixius K; Wollmer A; Bölck B; Mehlhorn U; Schwinger RH
    Pflugers Arch; 2003 Nov; 447(2):150-7. PubMed ID: 14530977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic SR Ca2+-ATPase inhibition causes adaptive changes in cellular Ca2+ transport.
    Brittsan AG; Ginsburg KS; Chu G; Yatani A; Wolska BM; Schmidt AG; Asahi M; MacLennan DH; Bers DM; Kranias EG
    Circ Res; 2003 Apr; 92(7):769-76. PubMed ID: 12637367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative relevance of phosphorylation of the Thr(17) residue of phospholamban is different at different levels of beta-adrenergic stimulation.
    Said M; Mundiña-Weilenmann C; Vittone L; Mattiazzi A
    Pflugers Arch; 2002 Sep; 444(6):801-9. PubMed ID: 12355181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-Adrenergic regulation of cAMP and protein phosphorylation in phospholamban-knockout mouse hearts.
    Kiss E; Edes I; Sato Y; Luo W; Liggett SB; Kranias EG
    Am J Physiol; 1997 Feb; 272(2 Pt 2):H785-90. PubMed ID: 9124439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic approaches to define the functional role of dual site phospholamban phosphorylation.
    Luo W; Chu G; Sato Y; Zhou Z; Kadambi VJ; Kranias EG
    J Biol Chem; 1998 Feb; 273(8):4734-9. PubMed ID: 9468536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation.
    Kuschel M; Karczewski P; Hempel P; Schlegel WP; Krause EG; Bartel S
    Am J Physiol; 1999 May; 276(5):H1625-33. PubMed ID: 10330247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximal inhibition of SERCA2 Ca(2+) affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban.
    Brittsan AG; Carr AN; Schmidt AG; Kranias EG
    J Biol Chem; 2000 Apr; 275(16):12129-35. PubMed ID: 10766848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo.
    Zhai J; Schmidt AG; Hoit BD; Kimura Y; MacLennan DH; Kranias EG
    J Biol Chem; 2000 Apr; 275(14):10538-44. PubMed ID: 10744747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course and mechanisms of phosphorylation of phospholamban residues in ischemia-reperfused rat hearts. Dissociation of phospholamban phosphorylation pathways.
    Vittone L; Mundiña-Weilenmann C; Said M; Ferrero P; Mattiazzi A
    J Mol Cell Cardiol; 2002 Jan; 34(1):39-50. PubMed ID: 11812163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual site phospholamban phosphorylation and its physiological relevance in the heart.
    Hagemann D; Xiao RP
    Trends Cardiovasc Med; 2002 Feb; 12(2):51-6. PubMed ID: 11852250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice.
    Kadambi VJ; Ponniah S; Harrer JM; Hoit BD; Dorn GW; Walsh RA; Kranias EG
    J Clin Invest; 1996 Jan; 97(2):533-9. PubMed ID: 8567978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and quantitation of phospholamban and its phosphorylation state using antibodies.
    Mayer EJ; Huckle W; Johnson RG; McKenna E
    Biochem Biophys Res Commun; 2000 Jan; 267(1):40-8. PubMed ID: 10623571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of phospholamban and troponin I in beta-adrenergic-induced acceleration of cardiac relaxation.
    Li L; Desantiago J; Chu G; Kranias EG; Bers DM
    Am J Physiol Heart Circ Physiol; 2000 Mar; 278(3):H769-79. PubMed ID: 10710345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered dose response to beta-agonists in SERCA1a-expressing hearts ex vivo and in vivo.
    Huke S; Prasad V; Nieman ML; Nattamai KJ; Grupp IL; Lorenz JN; Periasamy M
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H958-65. PubMed ID: 12181124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monomeric phospholamban overexpression in transgenic mouse hearts.
    Chu G; Dorn GW; Luo W; Harrer JM; Kadambi VJ; Walsh RA; Kranias EG
    Circ Res; 1997 Oct; 81(4):485-92. PubMed ID: 9314829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of phospholamban by peroxynitrite decreases beta-adrenergic stimulation in cardiomyocytes.
    Kohr MJ; Wang H; Wheeler DG; Velayutham M; Zweier JL; Ziolo MT
    Cardiovasc Res; 2008 Jan; 77(2):353-61. PubMed ID: 18006474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.