BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10989273)

  • 41. Opioid receptors in the nucleus accumbens regulate attentional learning in the blocking paradigm.
    Iordanova MD; McNally GP; Westbrook RF
    J Neurosci; 2006 Apr; 26(15):4036-45. PubMed ID: 16611820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphine attenuates the expression of sensitization to ethanol, but opioid antagonists do not.
    Abrahao KP; Quadros IM; Souza-Formigoni ML
    Neuroscience; 2008 Oct; 156(4):857-64. PubMed ID: 18804151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleus accumbens opioids regulate flavor-based preferences in food consumption.
    Woolley JD; Lee BS; Fields HL
    Neuroscience; 2006 Nov; 143(1):309-17. PubMed ID: 17049180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mesolimbic dopamine drives the diurnal variation in opiate-induced feeding.
    Barbano MF; Stinus L; Cador M; Ahmed SH
    Pharmacol Biochem Behav; 2005 Jul; 81(3):569-74. PubMed ID: 15951009
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens.
    Dong Z; Han H; Wang M; Xu L; Hao W; Cao J
    Hippocampus; 2006; 16(10):809-13. PubMed ID: 16897719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the ventral tegmental area and in the nucleus accumbens shell region in the rat.
    MacDonald AF; Billington CJ; Levine AS
    Am J Physiol Regul Integr Comp Physiol; 2003 Nov; 285(5):R999-R1004. PubMed ID: 12907414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation.
    Rosas M; Porru S; Fenu S; Ruiu S; Peana AT; Papale A; Brambilla R; Di Chiara G; Acquas E
    Psychopharmacology (Berl); 2016 Aug; 233(15-16):2943-54. PubMed ID: 27245230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CB1 receptors modulate the intake of a sweetened-fat diet in response to μ-opioid receptor stimulation of the nucleus accumbens.
    Skelly MJ; Guy EG; Howlett AC; Pratt WE
    Pharmacol Biochem Behav; 2010 Nov; 97(1):144-51. PubMed ID: 20562021
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Voluntary wheel running effects on intra-accumbens opioid high-fat feeding and locomotor behavior in Sprague-Dawley and Wistar rat strains.
    Lee JR; Parker KE; Tapia M; Johns HW; Floros TG; Roberts MD; Booth FW; Will MJ
    Physiol Behav; 2019 Jul; 206():67-75. PubMed ID: 30807769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning.
    Clissold KA; Pratt WE
    Behav Brain Res; 2014 Nov; 274():84-94. PubMed ID: 25101542
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intraaccumbens injections of substance P, morphine and amphetamine: effects on conditioned place preference and behavioral activity.
    Schildein S; Agmo A; Huston JP; Schwarting RK
    Brain Res; 1998 Apr; 790(1-2):185-94. PubMed ID: 9593886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intermittent-access binge consumption of sweet high-fat liquid does not require opioid or dopamine receptors in the nucleus accumbens.
    Lardeux S; Kim JJ; Nicola SM
    Behav Brain Res; 2015 Oct; 292():194-208. PubMed ID: 26097003
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Voluntary wheel running effects on intra-accumbens opioid driven diet preferences in male and female rats.
    Lee JR; Tapia MA; Weise VN; Bathe EL; Vieira-Potter VJ; Booth FW; Will MJ
    Neuropharmacology; 2019 Sep; 155():22-30. PubMed ID: 31100290
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disruption of morphine-conditioned place preference by a delta2-opioid receptor antagonist: study of mu-opioid and delta-opioid receptor expression at the synapse.
    Billa SK; Xia Y; Morón JA
    Eur J Neurosci; 2010 Aug; 32(4):625-31. PubMed ID: 20626460
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Food-induced behavioral sensitization, its cross-sensitization to cocaine and morphine, pharmacological blockade, and effect on food intake.
    Le Merrer J; Stephens DN
    J Neurosci; 2006 Jul; 26(27):7163-71. PubMed ID: 16822973
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Central discriminative effects of morphine in rats: training via intracerebroventricular administration.
    Easterling KW; Holtzman SG
    Brain Res Bull; 2001 Dec; 56(6):545-51. PubMed ID: 11786240
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensitization of the locomotor response to psychostimulants after repeated opiate exposure: role of the nucleus accumbens.
    Cunningham ST; Finn M; Kelley AE
    Neuropsychopharmacology; 1997 Feb; 16(2):147-55. PubMed ID: 9015797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Suppression of c-fos induction in the nucleus accumbens prevents acquisition but not expression of morphine-conditioned place preference.
    Tolliver BK; Sganga MW; Sharp FR
    Eur J Neurosci; 2000 Sep; 12(9):3399-406. PubMed ID: 10998122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brain opioid-receptors are involved in mediating peripheral electric stimulation-induced inhibition of morphine conditioned place preference in rats.
    Shi XD; Ren W; Wang GB; Luo F; Han JS; Cui CL
    Brain Res; 2003 Aug; 981(1-2):23-9. PubMed ID: 12885422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuroimmune mechanisms of opioid-mediated conditioned immunomodulation.
    Saurer TB; Ijames SG; Carrigan KA; Lysle DT
    Brain Behav Immun; 2008 Jan; 22(1):89-97. PubMed ID: 17689049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.