BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10989657)

  • 1. Excitotoxicity and mitochondria.
    Nicholls DG; Budd SL; Ward MW; Castilho RF
    Biochem Soc Symp; 1999; 66():55-67. PubMed ID: 10989657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells.
    Castilho RF; Hansson O; Ward MW; Budd SL; Nicholls DG
    J Neurosci; 1998 Dec; 18(24):10277-86. PubMed ID: 9852565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria and neuronal glutamate excitotoxicity.
    Nicholls DG; Budd SL
    Biochim Biophys Acta; 1998 Aug; 1366(1-2):97-112. PubMed ID: 9714760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells.
    Castilho RF; Ward MW; Nicholls DG
    J Neurochem; 1999 Apr; 72(4):1394-401. PubMed ID: 10098841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells.
    Ward MW; Rego AC; Frenguelli BG; Nicholls DG
    J Neurosci; 2000 Oct; 20(19):7208-19. PubMed ID: 11007877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells.
    Budd SL; Nicholls DG
    J Neurochem; 1996 Dec; 67(6):2282-91. PubMed ID: 8931459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria control ampa/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells.
    Rego AC; Ward MW; Nicholls DG
    J Neurosci; 2001 Mar; 21(6):1893-901. PubMed ID: 11245674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
    Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J
    Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate excitotoxicity and neuronal energy metabolism.
    Nicholls DG; Budd SL; Castilho RF; Ward MW
    Ann N Y Acad Sci; 1999; 893():1-12. PubMed ID: 10672225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMPA receptor activation causes preferential mitochondrial Ca²⁺ load and oxidative stress in motor neurons.
    Joshi DC; Tewari BP; Singh M; Joshi PG; Joshi NB
    Brain Res; 2015 Aug; 1616():1-9. PubMed ID: 25944722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity.
    Nicholls DG; Johnson-Cadwell L; Vesce S; Jekabsons M; Yadava N
    J Neurosci Res; 2007 Nov; 85(15):3206-12. PubMed ID: 17455297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate.
    Jekabsons MB; Nicholls DG
    J Biol Chem; 2004 Jul; 279(31):32989-3000. PubMed ID: 15166243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astaxanthin Protection against Neuronal Excitotoxicity via Glutamate Receptor Inhibition and Improvement of Mitochondrial Function.
    Kandy SK; Nimonkar MM; Dash SS; Mehta B; Markandeya YS
    Mar Drugs; 2022 Oct; 20(10):. PubMed ID: 36286468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria.
    Fornazari M; de Paula JG; Castilho RF; Kowaltowski AJ
    J Neurosci Res; 2008 May; 86(7):1548-56. PubMed ID: 18189325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons.
    Almeida A; Bolaños JP
    J Neurochem; 2001 Apr; 77(2):676-90. PubMed ID: 11299330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient mitochondrial permeability transition mediates excitotoxicity in glutamate-sensitive NSC34D motor neuron-like cells.
    Liu X; Xu S; Wang P; Wang W
    Exp Neurol; 2015 Sep; 271():122-30. PubMed ID: 26024861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-induced differential mitochondrial response in young and adult rats.
    Kannurpatti SS; Sanganahalli BG; Mishra S; Joshi PG; Joshi NB
    Neurochem Int; 2004 Apr; 44(5):361-9. PubMed ID: 14643754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells.
    Nicholls DG; Vesce S; Kirk L; Chalmers S
    Cell Calcium; 2003; 34(4-5):407-24. PubMed ID: 12909085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.