These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10989660)

  • 1. Mitochondrial dysfunction in Parkinson's disease.
    Greenamyre JT; MacKenzie G; Peng TI; Stephans SE
    Biochem Soc Symp; 1999; 66():85-97. PubMed ID: 10989660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson's disease.
    Choi HJ; Lee SY; Cho Y; No H; Kim SW; Hwang O
    Neurochem Int; 2006 Mar; 48(4):255-62. PubMed ID: 16343695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases.
    Schulz JB; Matthews RT; Klockgether T; Dichgans J; Beal MF
    Mol Cell Biochem; 1997 Sep; 174(1-2):193-7. PubMed ID: 9309687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of parkinson's disease.
    Ebadi M; Govitrapong P; Sharma S; Muralikrishnan D; Shavali S; Pellett L; Schafer R; Albano C; Eken J
    Biol Signals Recept; 2001; 10(3-4):224-53. PubMed ID: 11351130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice.
    Singh A; Verma P; Balaji G; Samantaray S; Mohanakumar KP
    Neurochem Int; 2016 Oct; 99():221-232. PubMed ID: 27395789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease.
    Duan W; Mattson MP
    J Neurosci Res; 1999 Jul; 57(2):195-206. PubMed ID: 10398297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson's disease.
    Prediger RD; Aguiar AS; Moreira EL; Matheus FC; Castro AA; Walz R; De Bem AF; Latini A; Tasca CI; Farina M; Raisman-Vozari R
    Curr Pharm Des; 2011; 17(5):489-507. PubMed ID: 21375482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration.
    Dykens JA
    J Neurochem; 1994 Aug; 63(2):584-91. PubMed ID: 8035183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease.
    Novikova L; Garris BL; Garris DR; Lau YS
    Neuroscience; 2006 Jun; 140(1):67-76. PubMed ID: 16533572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson's disease.
    Li H; Dryhurst G
    J Neurochem; 1997 Oct; 69(4):1530-41. PubMed ID: 9326282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis.
    Beal MF
    Ann Neurol; 1998 Sep; 44(3 Suppl 1):S110-4. PubMed ID: 9749581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenesis and animal studies of Parkinson's disease.
    Oertel WH; Kupsch A
    Curr Opin Neurol Neurosurg; 1993 Jun; 6(3):323-32. PubMed ID: 8507901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons.
    Almeida A; Bolaños JP
    J Neurochem; 2001 Apr; 77(2):676-90. PubMed ID: 11299330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex I and Parkinson's disease.
    Greenamyre JT; Sherer TB; Betarbet R; Panov AV
    IUBMB Life; 2001; 52(3-5):135-41. PubMed ID: 11798025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of glutamate in the pathophysiology of Parkinson's disease.
    Blandini F; Greenamyre JT; Nappi G
    Funct Neurol; 1996; 11(1):3-15. PubMed ID: 8936453
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.