BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10990027)

  • 1. Substituent distribution in highly branched dextrins from methylated starches.
    van der Burgt YE; Bergsma J; Bleeker IP; Mijland PJ; Kamerling JP; Vliegenthart JF
    Carbohydr Res; 2000 Aug; 327(4):423-9. PubMed ID: 10990027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of methyl substituents in amylose and amylopectin from methylated potato starches.
    van der Burgt YE; Bergsma J; Bleeker IP; Mijland PJ; van der Kerk-van Hoof A; Kamerling JP; Vliegenthart JF
    Carbohydr Res; 2000 Apr; 325(3):183-91. PubMed ID: 10795809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitution patterns in methylated potato starch as revealed from the structure and composition of fragments in enzymatic digests.
    Steeneken PA; Tas AC; Woortman AJ; Sanders P; Mijland PJ; de Weijs LG
    Carbohydr Res; 2008 Sep; 343(14):2411-6. PubMed ID: 18692178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins.
    Nakazawa Y; Wang YJ
    Carbohydr Res; 2003 Nov; 338(24):2871-82. PubMed ID: 14667708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine structure characterization of amylopectins from grain amaranth starch.
    Kong X; Corke H; Bertoft E
    Carbohydr Res; 2009 Sep; 344(13):1701-8. PubMed ID: 19604502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch biosynthesis: sucrose as a substrate for the synthesis of a highly branched component found in 12 varieties of starches.
    Mukerjea R; Robyt JF
    Carbohydr Res; 2003 Sep; 338(18):1811-22. PubMed ID: 12932364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified method of determining the internal structure of amylopectin from barley starch without amylopectin isolation.
    Zhao X; Andersson M; Andersson R
    Carbohydr Polym; 2021 Mar; 255():117503. PubMed ID: 33436256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the fine structure of alpha-dextrins derived from amylopectin and their relation to the structure of waxy-maize starch.
    Bertoft E
    Carbohydr Res; 1991 Jun; 212():229-44. PubMed ID: 1959119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases.
    Lee BH; Hamaker BR
    Carbohydr Polym; 2017 Feb; 157():207-213. PubMed ID: 27987919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymic analysis of the structure of oxidized potato starches.
    Zhu Q; Bertoft E
    Int J Biol Macromol; 1997 Aug; 21(1-2):131-5. PubMed ID: 9283027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.
    Jochym KK; Nebesny E
    Carbohydr Polym; 2017 Sep; 172():152-158. PubMed ID: 28606521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between branching density and crystalline structure of A- and B-type maize mutant starches.
    Gérard C; Planchot V; Colonna P; Bertoft E
    Carbohydr Res; 2000 Jun; 326(2):130-44. PubMed ID: 10877096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity.
    Blennow A; Bay-Smidt AM; Olsen CE; Møller BL
    Int J Biol Macromol; 2000 Jun; 27(3):211-8. PubMed ID: 10828367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slowly digestible property of highly branched α-limit dextrins produced by 4,6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo.
    Ryu JJ; Li X; Lee ES; Li D; Lee BH
    Carbohydr Polym; 2022 Jan; 275():118685. PubMed ID: 34742415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch source influences dietary glucose generation at the mucosal α-glucosidase level.
    Lin AH; Lee BH; Nichols BL; Quezada-Calvillo R; Rose DR; Naim HY; Hamaker BR
    J Biol Chem; 2012 Oct; 287(44):36917-21. PubMed ID: 22988246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of internal structure of maize starch without amylose and amylopectin separation.
    Zhu F; Bertoft E; Seetharaman K
    Carbohydr Polym; 2013 Sep; 97(2):475-81. PubMed ID: 23911473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of the substituent distribution in hydroxypropylated potato amylopectin starch.
    Richardson S; Nilsson GS; Bergquist KE; Gorton L; Mischnick P
    Carbohydr Res; 2000 Sep; 328(3):365-73. PubMed ID: 11072843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.
    Umeki K; Yamamoto T
    J Biochem; 1975 Nov; 78(5):897-903. PubMed ID: 814118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes.
    Valk V; Lammerts van Bueren A; van der Kaaij RM; Dijkhuizen L
    FEBS J; 2016 Jun; 283(12):2354-68. PubMed ID: 27101946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate esters in amylopectin clusters of potato tuber starch.
    Wikman J; Larsen FH; Motawia MS; Blennow A; Bertoft E
    Int J Biol Macromol; 2011 May; 48(4):639-49. PubMed ID: 21335027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.