These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model. Herdeiro CAR; Radu E Phys Rev Lett; 2017 Dec; 119(26):261101. PubMed ID: 29328736 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopy of the Schwarzschild black hole at arbitrary frequencies. Casals M; Ottewill A Phys Rev Lett; 2012 Sep; 109(11):111101. PubMed ID: 23005609 [TBL] [Abstract][Full Text] [Related]
4. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes. Dias ÓJ; Godazgar M; Santos JE Phys Rev Lett; 2015 Apr; 114(15):151101. PubMed ID: 25933301 [TBL] [Abstract][Full Text] [Related]
6. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory. Kleihaus B; Kunz J; Radu E Phys Rev Lett; 2011 Apr; 106(15):151104. PubMed ID: 21568543 [TBL] [Abstract][Full Text] [Related]
7. On the Superradiance of Spin-1 Waves in an Equatorial Wedge around a Kerr Hole. Aguirre AN Astrophys J; 2000 Jan; 529(1):L9-L12. PubMed ID: 10615024 [TBL] [Abstract][Full Text] [Related]
8. Black Hole Quasibound States from a Draining Bathtub Vortex Flow. Patrick S; Coutant A; Richartz M; Weinfurtner S Phys Rev Lett; 2018 Aug; 121(6):061101. PubMed ID: 30141684 [TBL] [Abstract][Full Text] [Related]
9. Detecting Rotational Superradiance in Fluid Laboratories. Cardoso V; Coutant A; Richartz M; Weinfurtner S Phys Rev Lett; 2016 Dec; 117(27):271101. PubMed ID: 28084751 [TBL] [Abstract][Full Text] [Related]
10. Floating and sinking: the imprint of massive scalars around rotating black holes. Cardoso V; Chakrabarti S; Pani P; Berti E; Gualtieri L Phys Rev Lett; 2011 Dec; 107(24):241101. PubMed ID: 22242985 [TBL] [Abstract][Full Text] [Related]
11. Black Hole Quasinormal Modes and Seiberg-Witten Theory. Aminov G; Grassi A; Hatsuda Y Ann Henri Poincare; 2022; 23(6):1951-1977. PubMed ID: 35573815 [TBL] [Abstract][Full Text] [Related]
12. Gravitoelectromagnetic perturbations of Kerr-Newman black holes: stability and isospectrality in the slow-rotation limit. Pani P; Berti E; Gualtieri L Phys Rev Lett; 2013 Jun; 110(24):241103. PubMed ID: 25165905 [TBL] [Abstract][Full Text] [Related]
13. Gravitational Perturbations of Rotating Black Holes in Lorenz Gauge. Dolan SR; Kavanagh C; Wardell B Phys Rev Lett; 2022 Apr; 128(15):151101. PubMed ID: 35499892 [TBL] [Abstract][Full Text] [Related]
14. Relativistic Magnetic Reconnection in Kerr Spacetime. Asenjo FA; Comisso L Phys Rev Lett; 2017 Feb; 118(5):055101. PubMed ID: 28211707 [TBL] [Abstract][Full Text] [Related]
15. Spinning Black Holes Fall in Love. Le Tiec A; Casals M Phys Rev Lett; 2021 Apr; 126(13):131102. PubMed ID: 33861128 [TBL] [Abstract][Full Text] [Related]
16. Rotating Black Holes in Randall-Sundrum II Braneworlds. Biggs WD; Santos JE Phys Rev Lett; 2022 Jan; 128(2):021601. PubMed ID: 35089733 [TBL] [Abstract][Full Text] [Related]
17. Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes. East WE; Pretorius F Phys Rev Lett; 2017 Jul; 119(4):041101. PubMed ID: 29341737 [TBL] [Abstract][Full Text] [Related]
18. Turbulent black holes. Yang H; Zimmerman A; Lehner L Phys Rev Lett; 2015 Feb; 114(8):081101. PubMed ID: 25768746 [TBL] [Abstract][Full Text] [Related]
19. Supermassive black holes do not correlate with galaxy disks or pseudobulges. Kormendy J; Bender R; Cornell ME Nature; 2011 Jan; 469(7330):374-6. PubMed ID: 21248845 [TBL] [Abstract][Full Text] [Related]
20. No-hair theorem for black holes in astrophysical environments. Gürlebeck N Phys Rev Lett; 2015 Apr; 114(15):151102. PubMed ID: 25933302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]