These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 10990748)
1. Internal transport barrier with ion-cyclotron-resonance minority heating on tore supra. Hoang GT; Bourdelle C; Garbet X; Antar G; Budny RV; Aniel T; Basiuk V; Becoulet A; Devynck P; Lasalle J; Martin G; Saint-Laurent F Phys Rev Lett; 2000 May; 84(20):4593-6. PubMed ID: 10990748 [TBL] [Abstract][Full Text] [Related]
2. Identification of minority ion-cyclotron emission during radio frequency heating in the JET tokamak. Cottrell GA Phys Rev Lett; 2000 Mar; 84(11):2397-400. PubMed ID: 11018894 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous attainment of high electron and ion temperatures in discharges with internal transport barriers in ASDEX upgrade. Gunter S; Wolf RC; Leuterer F; Gruber O; Kaufmann M; Lackner K; Maraschek M; Mc Carthy PJ ; Meister H; Peeters A; Pereverzev G; Salzmann H; Schade S; Schweinzer J; Suttrop W Phys Rev Lett; 2000 Apr; 84(14):3097-100. PubMed ID: 11019021 [TBL] [Abstract][Full Text] [Related]
4. Convective transport suppression in the scrape-off layer using ion cyclotron resonance heating on the ASDEX Upgrade Tokamak. Antar G; Assas S; Bobkov V; Noterdaeme JM; Wolfrum E; Herrmann A; Rohde V; Phys Rev Lett; 2010 Oct; 105(16):165001. PubMed ID: 21230980 [TBL] [Abstract][Full Text] [Related]
5. Neutron emission spectroscopy results for internal transport barrier and mode conversion ion cyclotron resonance heating experiments at JET. Giacomelli L; Hjalmarsson A; Källne J; Hellesen C; Tardocchi M; Gorini G; Van Eester D; Lerche E; Johnson T; Kiptily V; Conroy S; Andersson Sundén E; Ericsson G; Gatu Johnson M; Sjöstrand H; Weiszflog M; Rev Sci Instrum; 2008 Oct; 79(10):10E514. PubMed ID: 19068506 [TBL] [Abstract][Full Text] [Related]
6. Ion cyclotron resonance heating (ICRH) systems for the Keda Mirror with AXisymmetry (KMAX). Liu M; Yi H; Lin M; Wang Y; Shi P; Zheng J; Sun X Rev Sci Instrum; 2017 May; 88(5):053505. PubMed ID: 28571457 [TBL] [Abstract][Full Text] [Related]
7. Modeling multiple-frequency electron cyclotron resonance heating. Spencer JA; Kim C; Kim JS; Evstatiev EG; Svidzinski V; Cluggish B Rev Sci Instrum; 2014 Feb; 85(2):02A914. PubMed ID: 24593493 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of electron heat transport of plasma with an electron internal-transport barrier in the large helical device. Ida K; Shimozuma T; Funaba H; Narihara K; Kubo S; Murakami S; Wakasa A; Yokoyama M; Takeiri Y; Watanabe KY; Tanaka K; Yoshinuma M; Liang Y; Ohyabu N; Phys Rev Lett; 2003 Aug; 91(8):085003. PubMed ID: 14525247 [TBL] [Abstract][Full Text] [Related]
10. Experimental determination of critical threshold in electron transport on Tore Supra. Hoang GT; Bourdelle C; Garbet X; Giruzzi G; Aniel T; Ottaviani M; Horton W; Zhu P; Budny RV Phys Rev Lett; 2001 Sep; 87(12):125001. PubMed ID: 11580517 [TBL] [Abstract][Full Text] [Related]
14. Impedance matching system using triple liquid stub tuners for high-power ion cyclotron resonance heating in EAST tokamak. Liu LN; Wang L; Yuan S; Mao YZ; Saito K; Zhang XJ; Qin CM; Liang QC; Long XY; Zhao YP; Cheng Y; Zhang W; Yang H; Zhu GH; Zhang K; Ping LL; Ai L; Guo YY; Wang GX; Zheng WM; Gao X; Lin XD; Wu MQ Rev Sci Instrum; 2022 Apr; 93(4):043506. PubMed ID: 35489959 [TBL] [Abstract][Full Text] [Related]
15. Ion heating and high-energy-particle production by ion-cyclotron heating in the large helical device. Mutoh T; Kumazawa R; Seki T; Watari T; Saito K; Torii Y; Hartmann DA; Zhao Y; Sasao M; Isobe M; Osakabe M; Krasilnikov AV; Ozaki T; Narihara K; Nagayama Y; Inagaki S; Shimpo F; Nomura G; Yokota M; Akaishi K; Ashikawa N; de Vries P ; Emoto M; Funaba H; Fukuyama A; Goto M Phys Rev Lett; 2000 Nov; 85(21):4530-3. PubMed ID: 11082588 [TBL] [Abstract][Full Text] [Related]
16. Design of the reflective optics for Tore Supra ECEI system. Nam Y; Lee W; Yun GS; Park HK; Elbeze D; Segui JL; Sabot R; Chenevoix JP Rev Sci Instrum; 2012 Oct; 83(10):10E318. PubMed ID: 23126976 [TBL] [Abstract][Full Text] [Related]
17. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited). Mascali D; Gammino S; Celona L; Ciavola G Rev Sci Instrum; 2012 Feb; 83(2):02A336. PubMed ID: 22380183 [TBL] [Abstract][Full Text] [Related]
18. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating. Maimone F; Tinschert K; Celona L; Lang R; Mäder J; Rossbach J; Spädtke P Rev Sci Instrum; 2012 Feb; 83(2):02A304. PubMed ID: 22380151 [TBL] [Abstract][Full Text] [Related]
19. Observation of turbulence suppression after electron-cyclotron-resonance-heating switch-off on the HL-2A tokamak. Liu Y; Shi ZB; Dong YB; Sun HJ; Sun AP; Li YG; Xia ZW; Li W; Ding XT; Xiao WW; Zhou Y; Zhou J; Rao J; Liu ZT; Yang QW; Duan XR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016403. PubMed ID: 21867318 [TBL] [Abstract][Full Text] [Related]
20. Development of a real-time impedance matching system for ion cyclotron resonance heating in experimental advanced superconducting tokamak. Chen QQ; Liu LN; Qin CM; Zhang XJ; Mao YZ; Yuan S; Zhang W; Yang H; Wang L; Cheng Y; Zhang K; Guo YY; Sun YP Rev Sci Instrum; 2024 Feb; 95(2):. PubMed ID: 38341717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]