These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10990766)

  • 1. Strain relaxation in InAs/GaAs(111)A heteroepitaxy.
    Ohtake A; Ozeki M; Nakamura J
    Phys Rev Lett; 2000 May; 84(20):4665-8. PubMed ID: 10990766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain Relaxation in GaSb/GaAs(111)A Heteroepitaxy Using Thin InAs Interlayers.
    Ohtake A; Mano T; Mitsuishi K; Sakuma Y
    ACS Omega; 2018 Nov; 3(11):15592-15597. PubMed ID: 31458215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates.
    Ohtake A; Mano T; Sakuma Y
    Sci Rep; 2020 Mar; 10(1):4606. PubMed ID: 32165693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective area heteroepitaxy of GaSb on GaAs (001) for in-plane InAs nanowire achievement.
    Fahed M; Desplanque L; Troadec D; Patriarche G; Wallart X
    Nanotechnology; 2016 Dec; 27(50):505301. PubMed ID: 27861165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High quality InAs quantum dots grown on patterned Si with a GaAs buffer layer.
    Wang Y; Zou J; Zhao ZM; Hao Z; Wang KL
    Nanotechnology; 2009 Jul; 20(30):305301. PubMed ID: 19581699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic structure of misfit dislocations at InAs/GaAs(110).
    Choudhury R; Bowler DR; Gillan MJ
    J Phys Condens Matter; 2008 Jun; 20(23):235227. PubMed ID: 21694318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New structure model for the GaAs(001)-c(4x4) surface.
    Ohtake A; Nakamura J; Tsukamoto S; Koguchi N; Natori A
    Phys Rev Lett; 2002 Nov; 89(20):206102. PubMed ID: 12443490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Studies of the Diffusion of Intrinsic Defects and Silicon Dopants in Bulk InAs.
    Reveil M; Huang HL; Chen HT; Liu J; Thompson MO; Clancy P
    Langmuir; 2017 Oct; 33(42):11484-11489. PubMed ID: 28915733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of partial relaxation mechanisms via anisotropic strain relief on epitaxial islands using semiconductor nanomembranes.
    Rosa BLT; Marçal LAB; Andrade RR; Pinto LD; Rodrigues WN; Souza PL; Pires MP; Nunes RW; Malachias A
    Nanotechnology; 2017 Jul; 28(30):305702. PubMed ID: 28675147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ion etching on the properties of GaAs.
    Kawabe M; Kanzaki N; Masuda K; Namba S
    Appl Opt; 1978 Aug; 17(16):2556-61. PubMed ID: 20203821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of intermixing in strain-relaxed epitaxial layers.
    Leontiou T; Tersoff J; Kelires PC
    Phys Rev Lett; 2010 Dec; 105(23):236104. PubMed ID: 21231484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots.
    Kegel I; Metzger TH; Lorke A; Peisl J; Stangl J; Bauer G; Garcia JM; Petroff PM
    Phys Rev Lett; 2000 Aug; 85(8):1694-7. PubMed ID: 10970591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy.
    Morales-Cortés H; Mejía-García C; Méndez-García VH; Vázquez-Cortés D; Rojas-Ramírez JS; Contreras-Guerrero R; Ramírez-López M; Martínez-Velis I; López-López M
    Nanotechnology; 2010 Apr; 21(13):134012. PubMed ID: 20208110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of column bending in high-resolution transmission electron microscopy on the strain evaluation of GaAs/InAs/GaAs heterostructures.
    Tillmann K; Lentzen M; Rosenfeld R
    Ultramicroscopy; 2000 May; 83(1-2):111-28. PubMed ID: 10805397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.
    Wang J; Gong M; Guo GC; He L
    J Phys Condens Matter; 2012 Nov; 24(47):475302. PubMed ID: 23103408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffraction contrast near heterostructure boundaries--its nature and its application.
    Bangert U; Harvey AJ
    Microsc Res Tech; 1993 Mar; 24(4):288-98. PubMed ID: 8513172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution.
    Fuster D; Alén B; González L; González Y; Martínez-Pastor J; González MU; García JM
    Nanotechnology; 2007 Jan; 18(3):035604. PubMed ID: 19636127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realization of nanoscaled tubular conductors by means of GaAs/InAs core/shell nanowires.
    Blömers C; Rieger T; Zellekens P; Haas F; Lepsa MI; Hardtdegen H; Gül O; Demarina N; Grützmacher D; Lüth H; Schäpers T
    Nanotechnology; 2013 Jan; 24(3):035203. PubMed ID: 23263179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled van der Waals heteroepitaxy of InAs nanowires on carbon honeycomb lattices.
    Hong YJ; Fukui T
    ACS Nano; 2011 Sep; 5(9):7576-84. PubMed ID: 21838312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.