These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10990784)

  • 1. Quantum cryptography using entangled photons in energy-time bell states.
    Tittel W; Brendel J; Zbinden H; Gisin N
    Phys Rev Lett; 2000 May; 84(20):4737-40. PubMed ID: 10990784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication.
    Peng CZ; Yang T; Bao XH; Zhang J; Jin XM; Feng FY; Yang B; Yang J; Yin J; Zhang Q; Li N; Tian BL; Pan JW
    Phys Rev Lett; 2005 Apr; 94(15):150501. PubMed ID: 15904125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental two-photon, three-dimensional entanglement for quantum communication.
    Vaziri A; Weihs G; Zeilinger A
    Phys Rev Lett; 2002 Dec; 89(24):240401. PubMed ID: 12484932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulated emission of polarization-entangled photons.
    Lamas-Linares A; Howell JC; Bouwmeester D
    Nature; 2001 Aug; 412(6850):887-90. PubMed ID: 11528472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band.
    Li X; Voss PL; Sharping JE; Kumar P
    Phys Rev Lett; 2005 Feb; 94(5):053601. PubMed ID: 15783637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semiconductor source of triggered entangled photon pairs.
    Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heralding Multiple Photonic Pulsed Bell Pairs via Frequency-Resolved Entanglement Swapping.
    Merkouche S; Thiel V; Davis AOC; Smith BJ
    Phys Rev Lett; 2022 Feb; 128(6):063602. PubMed ID: 35213188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposed bell experiment with genuine energy-time entanglement.
    Cabello A; Rossi A; Vallone G; De Martini F; Mataloni P
    Phys Rev Lett; 2009 Jan; 102(4):040401. PubMed ID: 19257405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource efficient source of multiphoton polarization entanglement.
    Megidish E; Shacham T; Halevy A; Dovrat L; Eisenberg HS
    Phys Rev Lett; 2012 Aug; 109(8):080504. PubMed ID: 23002730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurement of decoherence for entanglement between a photon and stored atomic excitation.
    de Riedmatten H; Laurat J; Chou CW; Schomburg EW; Felinto D; Kimble HJ
    Phys Rev Lett; 2006 Sep; 97(11):113603. PubMed ID: 17025884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source.
    Fattal D; Inoue K; Vucković J; Santori C; Solomon GS; Yamamoto Y
    Phys Rev Lett; 2004 Jan; 92(3):037903. PubMed ID: 14753911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subnatural-linewidth polarization-entangled photon pairs with controllable temporal length.
    Liao K; Yan H; He J; Du S; Zhang ZM; Zhu SL
    Phys Rev Lett; 2014 Jun; 112(24):243602. PubMed ID: 24996089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.
    Wang J; Gong M; Guo GC; He L
    Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise.
    Banaszek K; Dragan A; Wasilewski W; Radzewicz C
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):257901. PubMed ID: 15245064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.
    MacLean JW; Donohue JM; Resch KJ
    Phys Rev Lett; 2018 Feb; 120(5):053601. PubMed ID: 29481173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon.
    Cao Y; Li YH; Zou WJ; Li ZP; Shen Q; Liao SK; Ren JG; Yin J; Chen YA; Peng CZ; Pan JW
    Phys Rev Lett; 2018 Apr; 120(14):140405. PubMed ID: 29694138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1.5-μm band polarization entangled photon-pair source with variable Bell states.
    Arahira S; Kishimoto T; Murai H
    Opt Express; 2012 Apr; 20(9):9862-75. PubMed ID: 22535079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of hyperentangled photon pairs.
    Barreiro JT; Langford NK; Peters NA; Kwiat PG
    Phys Rev Lett; 2005 Dec; 95(26):260501. PubMed ID: 16486324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum entanglement distillation with metamaterials.
    al Farooqui MA; Breeland J; Aslam MI; Sadatgol M; Özdemir ŞK; Tame M; Yang L; Güney DÖ
    Opt Express; 2015 Jul; 23(14):17941-54. PubMed ID: 26191854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons.
    Guo PL; Dong C; He Y; Jing F; He WT; Ren BC; Li CY; Deng FG
    Opt Express; 2020 Feb; 28(4):4611-4624. PubMed ID: 32121695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.