These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 10990899)

  • 1. Microscopic identification of the origin of generation-recombination noise in hydrogenated amorphous silicon with noise-detected magnetic resonance.
    Goennenwein ST; Bayerl MW; Brandt MS; Stutzmann M
    Phys Rev Lett; 2000 May; 84(22):5188-91. PubMed ID: 10990899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CW and pulsed electrically detected magnetic resonance spectroscopy at 263GHz/12T on operating amorphous silicon solar cells.
    Akhtar W; Schnegg A; Veber S; Meier C; Fehr M; Lips K
    J Magn Reson; 2015 Aug; 257():94-101. PubMed ID: 26112328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic structure of interface states in silicon heterojunction solar cells.
    George BM; Behrends J; Schnegg A; Schulze TF; Fehr M; Korte L; Rech B; Lips K; Rohrmüller M; Rauls E; Schmidt WG; Gerstmann U
    Phys Rev Lett; 2013 Mar; 110(13):136803. PubMed ID: 23581355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-frequency EDMR applied to microcrystalline thin-film silicon solar cells.
    Meier C; Behrends J; Teutloff C; Astakhov O; Schnegg A; Lips K; Bittl R
    J Magn Reson; 2013 Sep; 234():1-9. PubMed ID: 23820089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonradiative electron-hole recombination by a low-barrier pathway in hydrogenated silicon semiconductors.
    Zhang SB; Branz HM
    Phys Rev Lett; 2000 Jan; 84(5):967-70. PubMed ID: 11017417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically detected magnetic resonance signal intensity at resonant frequencies from 300 to 900 MHz in a constant microwave field.
    Sato T; Yokoyama H; Ohya H; Kamada H
    J Magn Reson; 1999 Aug; 139(2):422-9. PubMed ID: 10423380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling amorphous silicon with hydrogenated defects: GW treatment of the ST12 phase.
    Fisker C; Trolle ML; Pedersen TG
    J Phys Condens Matter; 2012 Aug; 24(32):325803, 1-6. PubMed ID: 22785043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-dependent recombination between phosphorus donors in silicon and Si/SiO{2} interface states investigated with pulsed electrically detected electron double resonance.
    Hoehne F; Huebl H; Galler B; Stutzmann M; Brandt MS
    Phys Rev Lett; 2010 Jan; 104(4):046402. PubMed ID: 20366723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between hydrogen and paramagnetic defects in thin film silicon irradiated with 2 MeV electrons.
    Astakhov O; Carius R; Petrusenko Y; Borysenko V; Barankov D; Finger F
    J Phys Condens Matter; 2012 Aug; 24(30):305801. PubMed ID: 22763583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and 1/f noise of boron doped polymorphous silicon films.
    Li SB; Wu ZM; Jiang YD; Li W; Liao NM; Yu JS
    Nanotechnology; 2008 Feb; 19(8):085706. PubMed ID: 21730737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing.
    Gai X; Choi DY; Luther-Davies B
    Opt Express; 2014 Apr; 22(8):9948-58. PubMed ID: 24787877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides.
    Narayanan K; Elshaari AW; Preble SF
    Opt Express; 2010 May; 18(10):9809-14. PubMed ID: 20588830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators.
    Pelc JS; Rivoire K; Vo S; Santori C; Fattal DA; Beausoleil RG
    Opt Express; 2014 Feb; 22(4):3797-810. PubMed ID: 24663700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport in phosphorus-doped silicon nanocrystal networks.
    Stegner AR; Pereira RN; Klein K; Lechner R; Dietmueller R; Brandt MS; Stutzmann M; Wiggers H
    Phys Rev Lett; 2008 Jan; 100(2):026803. PubMed ID: 18232904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron spin resonance in silicon substituted apatite and tricalcium phosphate.
    Pietak AM; Reid JW; Sayer M
    Biomaterials; 2005 Jun; 26(18):3819-30. PubMed ID: 15626430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and control of the origin of photoluminescence from silicon quantum dots.
    Hao HL; Shen WZ
    Nanotechnology; 2008 Nov; 19(45):455704. PubMed ID: 21832793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of optically induced electron-spin resonance in hydrogenated amorphous silicon.
    Yamasaki S; Okushi H; Matsuda A; Tanaka K; Isoya J
    Phys Rev Lett; 1990 Aug; 65(6):756-759. PubMed ID: 10043011
    [No Abstract]   [Full Text] [Related]  

  • 18. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide.
    Shoji Y; Ogasawara T; Kamei T; Sakakibara Y; Suda S; Kintaka K; Kawashima H; Okano M; Hasama T; Ishikawa H; Mori M
    Opt Express; 2010 Mar; 18(6):5668-73. PubMed ID: 20389582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation processes in silicon heterojunction solar cells probed via noise spectroscopy.
    Davenport K; Trinh CT; Hayward M; Lips K; Rogachev A
    Sci Rep; 2021 Jun; 11(1):13238. PubMed ID: 34168278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
    Wang KY; Foster AC
    Opt Lett; 2012 Apr; 37(8):1331-3. PubMed ID: 22513676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.