These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10990994)

  • 1. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation?
    Schneider U; Brand R; Lunkenheimer P; Loidl A
    Phys Rev Lett; 2000 Jun; 84(24):5560-3. PubMed ID: 10990994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of excess wing and beta-process in simple glass formers.
    Gainaru C; Kahlau R; Rössler EA; Böhmer R
    J Chem Phys; 2009 Nov; 131(18):184510. PubMed ID: 19916615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dielectric response at the excess wing of glass-forming liquids.
    Bauer T; Lunkenheimer P; Kastner S; Loidl A
    Phys Rev Lett; 2013 Mar; 110(10):107603. PubMed ID: 23521298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband dielectric spectroscopy on benzophenone: alpha relaxation, beta relaxation, and mode coupling theory.
    Lunkenheimer P; Pardo LC; Köhler M; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031506. PubMed ID: 18517387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure evolution of the excess wing in a type-B glass former.
    Casalini R; Roland CM
    Phys Rev Lett; 2003 Jul; 91(1):015702. PubMed ID: 12906552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids.
    Jakobsen B; Niss K; Olsen NB
    J Chem Phys; 2005 Dec; 123(23):234511. PubMed ID: 16392935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.
    Wojnarowska Z; Swiety-Pospiech A; Grzybowska K; Hawelek L; Paluch M; Ngai KL
    J Chem Phys; 2012 Apr; 136(16):164507. PubMed ID: 22559496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Johari-Goldstein Relaxation Far Below T_{g}: Experimental Evidence for the Gardner Transition in Structural Glasses?
    Geirhos K; Lunkenheimer P; Loidl A
    Phys Rev Lett; 2018 Feb; 120(8):085705. PubMed ID: 29543001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of large hydrostatic pressure on the dielectric loss spectrum of type- a glass formers.
    Hensel-Bielowka S; Pawlus S; Roland CM; Zioło J; Paluch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):050501. PubMed ID: 15244799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between the activation energy of the Johari-Goldstein beta relaxation and T(g) of glass formers.
    Ngai KL; Capaccioli S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031501. PubMed ID: 15089297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glassy dynamics under superhigh pressure.
    Pronin AA; Kondrin MV; Lyapin AG; Brazhkin VV; Volkov AA; Lunkenheimer P; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041503. PubMed ID: 20481727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of dielectric spectroscopy to monitor molecular mobility in glassy and supercooled trehalose.
    Bhardwaj SP; Suryanarayanan R
    J Phys Chem B; 2012 Sep; 116(38):11728-36. PubMed ID: 22913647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta relaxation versus high frequency wing in the dielectric spectra of a binary molecular glass former.
    Blochowicz T; Rössler EA
    Phys Rev Lett; 2004 Jun; 92(22):225701. PubMed ID: 15245237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glassy relaxation and excess wing in mode-coupling theory: the dynamic susceptibility of propylene carbonate above and below T(c).
    Domschke M; Marsilius M; Blochowicz T; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031506. PubMed ID: 22060378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subtraction of DC conductivity and annealing: approaches to identify Johari-Goldstein relaxation in amorphous trehalose.
    Bhardwaj SP; Suryanarayanan R
    Mol Pharm; 2011 Aug; 8(4):1416-22. PubMed ID: 21639143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B; Maggi C; Christensen T; Dyre JC
    J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.