These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10991015)

  • 1. Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning.
    Stietz F; Bosbach J; Wenzel T; Vartanyan T; Goldmann A; Trager F
    Phys Rev Lett; 2000 Jun; 84(24):5644-7. PubMed ID: 10991015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron dynamics of silicon surface states: second-harmonic hole burning on Si(111)-(7 x 7).
    McGuire JA; Raschke MB; Shen YR
    Phys Rev Lett; 2006 Mar; 96(8):087401. PubMed ID: 16606222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques: a plasmon and cluster time-resolved spectroscopic study.
    Rodríguez-Sánchez ML; Rodríguez MJ; Blanco MC; Rivas J; López-Quintela MA
    J Phys Chem B; 2005 Jan; 109(3):1183-91. PubMed ID: 16851079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding.
    Bosbach J; Hendrich C; Stietz F; Vartanyan T; Träger F
    Phys Rev Lett; 2002 Dec; 89(25):257404. PubMed ID: 12484918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance.
    Hu M; Novo C; Funston A; Wang H; Staleva H; Zou S; Mulvaney P; Xia Y; Hartland GV
    J Mater Chem; 2008; 18(17):1949-1960. PubMed ID: 18846243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications.
    Zhang S; Chen L; Huang Y; Xu H
    Nanoscale; 2013 Aug; 5(15):6985-91. PubMed ID: 23800794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-enhanced luminescence of silicon quantum dots: effects of nanoparticles and molecular electron donors and acceptors on the photofading kinetics.
    Abualnaja KM; Šiller L; Horrocks BR
    Nanotechnology; 2015 Apr; 26(14):145704. PubMed ID: 25785514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.
    Habteyes TG; Dhuey S; Wood E; Gargas D; Cabrini S; Schuck PJ; Alivisatos AP; Leone SR
    ACS Nano; 2012 Jun; 6(6):5702-9. PubMed ID: 22646820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms.
    Zorić I; Zäch M; Kasemo B; Langhammer C
    ACS Nano; 2011 Apr; 5(4):2535-46. PubMed ID: 21438568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous natural linewidth in the 2p photoelectron spectrum of SiF4.
    Thomas TD; Miron C; Wiesner K; Morin P; Carroll TX; Saethre LJ
    Phys Rev Lett; 2002 Nov; 89(22):223001. PubMed ID: 12485066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiclassical approach to plasmon-electron coupling and Landau damping of surface plasmons.
    Gao Y; Yuan Z; Gao S
    J Chem Phys; 2011 Apr; 134(13):134702. PubMed ID: 21476764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.