These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10991139)

  • 41. Spectral kinetic energy transfer in turbulent premixed reacting flows.
    Towery CA; Poludnenko AY; Urzay J; O'Brien J; Ihme M; Hamlington PE
    Phys Rev E; 2016 May; 93(5):053115. PubMed ID: 27300986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Body-force effect on the lateral movement of cellular flames at low Lewis numbers.
    Kadowaki S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026303. PubMed ID: 11308573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cascade of circulations in fluid turbulence.
    Eyink GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066302. PubMed ID: 17280143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stability analysis of confined V-shaped flames in high-velocity streams.
    El-Rabii H; Joulin G; Kazakov KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066312. PubMed ID: 20866527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lifetimes of flame balls dragged by model turbulent flows: Role of velocity gradient fluctuations.
    D'Angelo Y; Joulin G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036304. PubMed ID: 15089405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wrinkled flames and geometrical stretch.
    Denet B; Joulin G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016315. PubMed ID: 21867312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simple criterion of importance of laminar flame instabilities in premixed turbulent combustion of mixtures characterized by low Lewis numbers.
    Chomiak J; Lipatnikov AN
    Phys Rev E; 2023 Jan; 107(1-2):015102. PubMed ID: 36797929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical simulation of a laboratory-scale turbulent V-flame.
    Bell JB; Day MS; Shepherd IG; Johnson MR; Cheng RK; Grcar JF; Beckner VE; Lijewski MJ
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10006-11. PubMed ID: 16006519
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pair dispersion of turbulent premixed flame elements.
    Chaudhuri S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):021001. PubMed ID: 25768450
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spontaneous transition of turbulent flames to detonations in unconfined media.
    Poludnenko AY; Gardiner TA; Oran ES
    Phys Rev Lett; 2011 Jul; 107(5):054501. PubMed ID: 21867073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonperturbative approach to the nonlinear dynamics of two-dimensional premixed flames.
    El-Rabii H; Joulin G; Kazakov KA
    Phys Rev Lett; 2008 May; 100(17):174501. PubMed ID: 18518294
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrohydrodynamic instability of premixed flames under manipulations of dc electric fields.
    Ren Y; Cui W; Li S
    Phys Rev E; 2018 Jan; 97(1-1):013103. PubMed ID: 29448413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical studies of flames in wide tubes: stability limits of curved stationary flames.
    Travnikov OY; Bychkov VV; Liberman MA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):468-74. PubMed ID: 11046286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Entropy Generation during Head-On Interaction of Premixed Flames with Inert Walls within Turbulent Boundary Layers.
    Ghai SK; Ahmed U; Chakraborty N; Klein M
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability.
    Yu R; Bai XS; Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063028. PubMed ID: 26764824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.
    Jin K; Duan Q; Liew KM; Peng Z; Gong L; Sun J
    J Hazard Mater; 2017 Apr; 327():116-126. PubMed ID: 28056399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prandtl-number dependence of turbulent flame propagation.
    Kerstein AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066306. PubMed ID: 11736275
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic theory of weak turbulence in plasmas.
    Wang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063103. PubMed ID: 23848785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defining a new class of turbulent flows.
    Stresing R; Peinke J; Seoud RE; Vassilicos JC
    Phys Rev Lett; 2010 May; 104(19):194501. PubMed ID: 20866968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.