These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10991180)

  • 1. Structure and electronic properties of MoS2 nanotubes.
    Seifert G; Terrones H; Terrones M; Jungnickel G; Frauenheim T
    Phys Rev Lett; 2000 Jul; 85(1):146-9. PubMed ID: 10991180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the indirect-direct band gap transition in the MoS
    Wu HH; Meng Q; Huang H; Liu CT; Wang XL
    Phys Chem Chem Phys; 2018 Jan; 20(5):3608-3613. PubMed ID: 29340382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics and electronic structure of armchair nanotubes with topological line defects.
    Okada S; Nakada K; Kawai T
    J Phys Condens Matter; 2007 Sep; 19(36):365231. PubMed ID: 21694176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Structures of AlGaN2 Nanotubes and AlN-GaN Nanotube Superlattice.
    Pan H; Feng YP; Lin J
    J Chem Theory Comput; 2008 May; 4(5):703-7. PubMed ID: 26621085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphenylene Nanotubes.
    Koch AT; Khoshaman AH; Fan HD; Sawatzky GA; Nojeh A
    J Phys Chem Lett; 2015 Oct; 6(19):3982-7. PubMed ID: 26722903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the electronic and magnetic properties of MoS
    Yang Y; Liu Y; Man B; Zhao M; Li W
    RSC Adv; 2019 May; 9(30):17203-17210. PubMed ID: 35519879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edge modes in zigzag and armchair ribbons of monolayer MoS
    Rostami H; Asgari R; Guinea F
    J Phys Condens Matter; 2016 Dec; 28(49):495001. PubMed ID: 27731311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes.
    Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A
    Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imogolite nanotubes: stability, electronic, and mechanical properties.
    Guimarães L; Enyashin AN; Frenzel J; Heine T; Duarte HA; Seifert G
    ACS Nano; 2007 Nov; 1(4):362-8. PubMed ID: 19206688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applications.
    Arab A; Li Q
    Sci Rep; 2015 Sep; 5():13706. PubMed ID: 26333948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent trends in the hydrogen evolution activity and electronic structure of MoS
    Ruffman C; Gilmour JTA; Garden AL
    Nanoscale Adv; 2021 Oct; 3(20):5860-5871. PubMed ID: 36132669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilities and electronic properties of monolayer MoS2 with one or two sulfur line vacancy defects.
    Han Y; Hu T; Li R; Zhou J; Dong J
    Phys Chem Chem Phys; 2015 Feb; 17(5):3813-9. PubMed ID: 25562072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the electronic structure of single-walled black phosphorus nanotubes.
    Guan L; Chen G; Tao J
    Phys Chem Chem Phys; 2016 Jun; 18(22):15177-81. PubMed ID: 27198550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphite-incorporated MoS2 nanotubes: a new coaxial binary system.
    Reza-San German C; Santiago P; Ascencio JA; Pal U; Pérez-Alvarez M; Rendón L; Mendoza D
    J Phys Chem B; 2005 Sep; 109(37):17488-95. PubMed ID: 16853236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor.
    Asadpour M; Jafari M; Asadpour M; Jafari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes.
    Zeng H; Hu H; Leburton JP
    ACS Nano; 2010 Jan; 4(1):292-6. PubMed ID: 20000404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.