These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 10991303)

  • 1. Simple proof of security of the BB84 quantum key distribution protocol.
    Shor PW; Preskill J
    Phys Rev Lett; 2000 Jul; 85(2):441-4. PubMed ID: 10991303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secure quantum key distribution with an uncharacterized source.
    Koashi M; Preskill J
    Phys Rev Lett; 2003 Feb; 90(5):057902. PubMed ID: 12633399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noisy processing and distillation of private quantum States.
    Renes JM; Smith G
    Phys Rev Lett; 2007 Jan; 98(2):020502. PubMed ID: 17358589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km.
    Schmitt-Manderbach T; Weier H; Fürst M; Ursin R; Tiefenbacher F; Scheidl T; Perdigues J; Sodnik Z; Kurtsiefer C; Rarity JG; Zeilinger A; Weinfurter H
    Phys Rev Lett; 2007 Jan; 98(1):010504. PubMed ID: 17358463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Private entanglement over arbitrary distances, even using noisy apparatus.
    Aschauer H; Briegel HJ
    Phys Rev Lett; 2002 Jan; 88(4):047902. PubMed ID: 11801170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconditional security of a three state quantum key distribution protocol.
    Boileau JC; Tamaki K; Batuwantudawe J; Laflamme R; Renes JM
    Phys Rev Lett; 2005 Feb; 94(4):040503. PubMed ID: 15783540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Security analysis of quantum key distribution on passive optical networks.
    Lim K; Ko H; Suh C; Rhee JK
    Opt Express; 2017 May; 25(10):11894-11909. PubMed ID: 28788747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foliated Quantum Error-Correcting Codes.
    Bolt A; Duclos-Cianci G; Poulin D; Stace TM
    Phys Rev Lett; 2016 Aug; 117(7):070501. PubMed ID: 27563942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secure BB84-type quantum key distribution with a simple phase error formula.
    Yin HL; Chen ZB
    Opt Lett; 2020 Apr; 45(7):1627-1630. PubMed ID: 32235959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Randomness determines practical security of BB84 quantum key distribution.
    Li HW; Yin ZQ; Wang S; Qian YJ; Chen W; Guo GC; Han ZF
    Sci Rep; 2015 Nov; 5():16200. PubMed ID: 26552359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured codes improve the Bennett-Brassard-84 quantum key rate.
    Smith G; Renes JM; Smolin JA
    Phys Rev Lett; 2008 May; 100(17):170502. PubMed ID: 18518263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconditional security of single-photon differential phase shift quantum key distribution.
    Wen K; Tamaki K; Yamamoto Y
    Phys Rev Lett; 2009 Oct; 103(17):170503. PubMed ID: 19905739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconditionally secure bit commitment by transmitting measurement outcomes.
    Kent A
    Phys Rev Lett; 2012 Sep; 109(13):130501. PubMed ID: 23030073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient multiuser quantum cryptography network based on entanglement.
    Xue P; Wang K; Wang X
    Sci Rep; 2017 Apr; 7():45928. PubMed ID: 28374854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Security of quantum key distribution with coherent states and homodyne detection.
    Iblisdir S; Van Assche G; Cerf NJ
    Phys Rev Lett; 2004 Oct; 93(17):170502. PubMed ID: 15525056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement-based quantum key distribution with biased basis choice via free space.
    Cao Y; Liang H; Yin J; Yong HL; Zhou F; Wu YP; Ren JG; Li YH; Pan GS; Yang T; Ma X; Peng CZ; Pan JW
    Opt Express; 2013 Nov; 21(22):27260-8. PubMed ID: 24216948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient decoy-state quantum key distribution with quantified security.
    Lucamarini M; Patel KA; Dynes JF; Fröhlich B; Sharpe AW; Dixon AR; Yuan ZL; Penty RV; Shields AJ
    Opt Express; 2013 Oct; 21(21):24550-65. PubMed ID: 24150299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Security of the Decoy-State BB84 Protocol with Imperfect State Preparation.
    Reutov A; Tayduganov A; Mayboroda V; Fat'yanov O
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental realization of equiangular three-state quantum key distribution.
    Schiavon M; Vallone G; Villoresi P
    Sci Rep; 2016 Jul; 6():30089. PubMed ID: 27465643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squashing models for optical measurements in quantum communication.
    Beaudry NJ; Moroder T; Lütkenhaus N
    Phys Rev Lett; 2008 Aug; 101(9):093601. PubMed ID: 18851610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.