These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10991388)

  • 1. Dynamics of localized structures in vectorial waves.
    Hernandez-Garcia E; Hoyuelos M; Colet P; San Miguel M
    Phys Rev Lett; 2000 Jul; 85(4):744-7. PubMed ID: 10991388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of phase singularities in the vector complex Ginzburg-Landau equation.
    Hoyuelos M; Jacobo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):017203. PubMed ID: 15697774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization patterns and vectorial defects in type-II optical parametric oscillators.
    Santagiustina M; Hernandez-Garcia E; San-Miguel M; Scroggie AJ; Oppo GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036610. PubMed ID: 11909288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation.
    Rousseau G; Chaté H; Kapral R
    Chaos; 2008 Jun; 18(2):026103. PubMed ID: 18601505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation.
    Tsoy EN; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036621. PubMed ID: 16605691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system.
    Jiang M; Wang X; Ouyang Q; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056202. PubMed ID: 15244899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistics of defect trajectories in spatio-temporal chaos in inclined layer convection and the complex Ginzburg-Landau equation.
    Huepe C; Riecke H; Daniels KE; Bodenschatz E
    Chaos; 2004 Sep; 14(3):864-74. PubMed ID: 15446997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of localized structures in bistable systems through nonlocal spatial coupling. II. The nonlocal Ginzburg-Landau equation.
    Gelens L; Matías MA; Gomila D; Dorissen T; Colet P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012915. PubMed ID: 24580305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unlocking of frozen dynamics in the complex Ginzburg-Landau equation.
    Das SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012135. PubMed ID: 23410311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback.
    Paulau PV; Gomila D; Colet P; Malomed BA; Firth WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036213. PubMed ID: 22060481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional solitary waves and vortices in a discrete nonlinear Schrödinger lattice.
    Kevrekidis PG; Malomed BA; Frantzeskakis DJ; Carretero-González R
    Phys Rev Lett; 2004 Aug; 93(8):080403. PubMed ID: 15447160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation of spatiotemporal structures from defect turbulence in the two-dimensional complex Ginzburg-Landau equation.
    Liu W; Täuber UC
    Phys Rev E; 2019 Nov; 100(5-1):052210. PubMed ID: 31869992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vectorial Swift-Hohenberg equation for transverse laser patterns.
    Hoyuelos M; dell'Erba M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065604. PubMed ID: 14754261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation.
    Howard M; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026213. PubMed ID: 14525090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vectorial self-diffraction effect in optically Kerr medium.
    Gu B; Ye F; Lou K; Li Y; Chen J; Wang HT
    Opt Express; 2012 Jan; 20(1):149-57. PubMed ID: 22274338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered and self-disordered dynamics of holes and defects in the one-dimensional complex Ginzburg-Landau equation.
    van Hecke M; Howard M
    Phys Rev Lett; 2001 Mar; 86(10):2018-21. PubMed ID: 11289844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonconservation of Topological Charge and Cusps in a One-Dimensional Laser Scheme.
    Veretenov NA; Fedorov SV; Rosanov NN
    Phys Rev Lett; 2020 Nov; 125(19):193901. PubMed ID: 33216606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic behavior in transverse-mode laser dynamics.
    Kaige W; Abraham NB; Albano AM
    Chaos; 1993 Jul; 3(3):287-294. PubMed ID: 12780037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Boltzmann model for the complex Ginzburg-Landau equation.
    Zhang J; Yan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066705. PubMed ID: 20866542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting vortices in superconductors: extracting one-dimensional topological singularities from a discretized complex scalar field.
    Phillips CL; Peterka T; Karpeyev D; Glatz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023311. PubMed ID: 25768639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.