BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10991788)

  • 21. Phylogenetics of Coenonymphina (Nymphalidae: Satyrinae) and the problem of rooting rapid radiations.
    Kodandaramaiah U; Peña C; Braby MF; Grund R; Müller CJ; Nylin S; Wahlberg N
    Mol Phylogenet Evol; 2010 Feb; 54(2):386-94. PubMed ID: 19686856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is the evolutionary history of the O-type P element in the saltans and willistoni groups of Drosophila similar to that of the canonical P element?
    de Setta N; Loreto EL; Carareto CM
    J Mol Evol; 2007 Dec; 65(6):715-24. PubMed ID: 18034216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rabbits, if anything, are likely Glires.
    Douzery EJ; Huchon D
    Mol Phylogenet Evol; 2004 Dec; 33(3):922-35. PubMed ID: 15522813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Drosophila introns originate by duplication.
    Tarrío R; Rodríguez-Trelles F; Ayala FJ
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1658-62. PubMed ID: 9465072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group.
    Rodríguez-Trelles F; Tarrío R; Ayala FJ
    Genetics; 1999 Sep; 153(1):339-50. PubMed ID: 10471717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Random roots and lineage sorting.
    Rosenfeld JA; Payne A; DeSalle R
    Mol Phylogenet Evol; 2012 Jul; 64(1):12-20. PubMed ID: 22445448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Penalized likelihood phylogenetic inference: bridging the parsimony-likelihood gap.
    Kim J; Sanderson MJ
    Syst Biol; 2008 Oct; 57(5):665-74. PubMed ID: 18853355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylogeny and age of diversification of the planitibia species group of the Hawaiian Drosophila.
    Bonacum J; O'Grady PM; Kambysellis M; Desalle R
    Mol Phylogenet Evol; 2005 Oct; 37(1):73-82. PubMed ID: 16182150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rooting phylogenies using gene duplications: an empirical example from the bees (Apoidea).
    Brady SG; Litman JR; Danforth BN
    Mol Phylogenet Evol; 2011 Sep; 60(3):295-304. PubMed ID: 21600997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minor shift in background substitutional patterns in the Drosophila saltans and willistoni lineages is insufficient to explain GC content of coding sequences.
    Singh ND; Arndt PF; Petrov DA
    BMC Biol; 2006 Oct; 4():37. PubMed ID: 17049096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disparate evolution of paralogous introns in the Xdh gene of Drosophila.
    Rodríguez-Trelles F; Tarrío R; Ayala FJ
    J Mol Evol; 2000 Feb; 50(2):123-30. PubMed ID: 10684346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new split of the Hox gene complex in Drosophila: relocation and evolution of the gene labial.
    Negre B; Ranz JM; Casals F; Cáceres M; Ruiz A
    Mol Biol Evol; 2003 Dec; 20(12):2042-54. PubMed ID: 12949134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree.
    Paton TA; Baker AJ
    Mol Phylogenet Evol; 2006 Jun; 39(3):657-67. PubMed ID: 16531074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu,Zn Sod gene.
    Kwiatowski J; Skarecky D; Bailey K; Ayala FJ
    J Mol Evol; 1994 May; 38(5):443-54. PubMed ID: 7545938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion.
    Miya M; Nishida M
    Mol Phylogenet Evol; 2000 Dec; 17(3):437-55. PubMed ID: 11133198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of Parsimony, Likelihood, and Bayesian approaches.
    Leaché AD; Reeder TW
    Syst Biol; 2002 Feb; 51(1):44-68. PubMed ID: 11943092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae.
    Tarrío R; Rodríguez-Trelles F; Ayala FJ
    Mol Biol Evol; 2001 Aug; 18(8):1464-73. PubMed ID: 11470837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstruction of ancestral nucleotide sequences and estimation of substitution frequencies in a star phylogeny.
    Arndt PF
    Gene; 2007 Apr; 390(1-2):75-83. PubMed ID: 17223282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the phylogeny of the Drosophila hydei subgroup: new insights from combined analyses of nuclear and mitochondrial data.
    Morán T; Fontdevila A
    Mol Phylogenet Evol; 2007 Jun; 43(3):1198-205. PubMed ID: 17292635
    [No Abstract]   [Full Text] [Related]  

  • 40. Molecular phylogenetics of the allodapine bee genus Braunsapis: A-T bias and heterogeneous substitution parameters.
    Schwarz MP; Tierney SM; Cooper SJ; Bull NJ
    Mol Phylogenet Evol; 2004 Jul; 32(1):110-22. PubMed ID: 15186801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.