These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 10992142)
41. Muscle function may depend on model selection in forward simulation of normal walking. Xiao M; Higginson JS J Biomech; 2008 Nov; 41(15):3236-42. PubMed ID: 18804767 [TBL] [Abstract][Full Text] [Related]
42. Muscle fascicle and tendon behavior during human locomotion revisited. Ishikawa M; Komi PV Exerc Sport Sci Rev; 2008 Oct; 36(4):193-9. PubMed ID: 18815488 [TBL] [Abstract][Full Text] [Related]
43. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks. Zivkovic MZ; Djuric S; Cuk I; Suzovic D; Jaric S J Sports Sci; 2017 Jul; 35(13):1287-1293. PubMed ID: 27541062 [TBL] [Abstract][Full Text] [Related]
44. Ground reaction forces during level ground walking with body weight unloading. Barela AM; de Freitas PB; Celestino ML; Camargo MR; Barela JA Braz J Phys Ther; 2014; 18(6):572-9. PubMed ID: 25590450 [TBL] [Abstract][Full Text] [Related]
45. A model of muscle-tendon function in human walking at self-selected speed. Endo K; Herr H IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689 [TBL] [Abstract][Full Text] [Related]
46. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Thelen DG; Anderson FC J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125 [TBL] [Abstract][Full Text] [Related]
47. An instance of reduced center of mass displacement: the Ba Gua Zhang walking gait. Chong RK; Chiu FC; Lee KH; Do MC Percept Mot Skills; 2009 Dec; 109(3):646-8. PubMed ID: 20178262 [TBL] [Abstract][Full Text] [Related]
48. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. Zehr EP; Balter JE; Ferris DP; Hundza SR; Loadman PM; Stoloff RH J Physiol; 2007 Jul; 582(Pt 1):209-27. PubMed ID: 17463036 [TBL] [Abstract][Full Text] [Related]
49. Effects of muscle strengthening on vertical jump height: a simulation study. Bobbert MF; Van Soest AJ Med Sci Sports Exerc; 1994 Aug; 26(8):1012-20. PubMed ID: 7968418 [TBL] [Abstract][Full Text] [Related]
50. A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. Anderson FC; Pandy MG Comput Methods Biomech Biomed Engin; 1999; 2(3):201-231. PubMed ID: 11264828 [TBL] [Abstract][Full Text] [Related]
51. Muscle force production during bent-knee, bent-hip walking in humans. Foster AD; Raichlen DA; Pontzer H J Hum Evol; 2013 Sep; 65(3):294-302. PubMed ID: 23928351 [TBL] [Abstract][Full Text] [Related]
52. Whole body movements in altered G environments. Constable R; Carpenter D J Gravit Physiol; 1995; 2(1):P104. PubMed ID: 11538883 [TBL] [Abstract][Full Text] [Related]
53. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. Pandy MG; Anderson FC; Hull DG J Biomech Eng; 1992 Nov; 114(4):450-60. PubMed ID: 1487896 [TBL] [Abstract][Full Text] [Related]
54. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. McBride JM; McCaulley GO; Cormie P J Strength Cond Res; 2008 May; 22(3):750-7. PubMed ID: 18438244 [TBL] [Abstract][Full Text] [Related]
55. Contributions of muscles to terminal-swing knee motions vary with walking speed. Arnold AS; Schwartz MH; Thelen DG; Delp SL J Biomech; 2007; 40(16):3660-71. PubMed ID: 17659289 [TBL] [Abstract][Full Text] [Related]
56. Pattern of anterior cruciate ligament force in normal walking. Shelburne KB; Pandy MG; Anderson FC; Torry MR J Biomech; 2004 Jun; 37(6):797-805. PubMed ID: 15111067 [TBL] [Abstract][Full Text] [Related]
57. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. Shelburne KB; Torry MR; Pandy MG J Orthop Res; 2006 Oct; 24(10):1983-90. PubMed ID: 16900540 [TBL] [Abstract][Full Text] [Related]
58. Influence of body segment parameter estimation on calculated ground reaction forces in highly dynamic movements. Fritz J; Kröll J; Schwameder H J Biomech; 2019 Feb; 84():11-17. PubMed ID: 30554813 [TBL] [Abstract][Full Text] [Related]
59. Optimization-based subject-specific planar human vertical jumping prediction: Effect of elbow flexion and weighted vest. Baus J; Harry JR; Yang J Proc Inst Mech Eng H; 2022 Jan; 236(1):65-71. PubMed ID: 34465231 [TBL] [Abstract][Full Text] [Related]
60. Optimization-based models of muscle coordination. Prilutsky BI; Zatsiorsky VM Exerc Sport Sci Rev; 2002 Jan; 30(1):32-8. PubMed ID: 11800497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]