BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 10992167)

  • 1. Neurotransmitter levels and synaptic strength at the Drosophila larval neuromuscular junction are not altered by mutation in the sluggish-A gene, which encodes proline oxidase and affects adult locomotion.
    Shayan AJ; Brodin L; Ottersen OP; Birinyi A; Hill CE; Govind CK; Atwood HL; Shupliakov O
    J Neurogenet; 2000 Sep; 14(3):165-92. PubMed ID: 10992167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis.
    Hayward DC; Delaney SJ; Campbell HD; Ghysen A; Benzer S; Kasprzak AB; Cotsell JN; Young IG; Miklos GL
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2979-83. PubMed ID: 8096642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae.
    Johansen J; Halpern ME; Johansen KM; Keshishian H
    J Neurosci; 1989 Feb; 9(2):710-25. PubMed ID: 2563766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology.
    Stewart BA; Schuster CM; Goodman CS; Atwood HL
    J Neurosci; 1996 Jun; 16(12):3877-86. PubMed ID: 8656281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs.
    Thomas U; Sigrist SJ
    Adv Exp Med Biol; 2012; 970():3-28. PubMed ID: 22351049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the
    Wang Y; Lobb-Rabe M; Ashley J; Anand V; Carrillo RA
    J Neurosci; 2021 Feb; 41(7):1401-1417. PubMed ID: 33402422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate Is a Wake-Active Neurotransmitter in Drosophila melanogaster.
    Zimmerman JE; Chan MT; Lenz OT; Keenan BT; Maislin G; Pack AI
    Sleep; 2017 Feb; 40(2):. PubMed ID: 28364503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroligin 2 is required for synapse development and function at the Drosophila neuromuscular junction.
    Sun M; Xing G; Yuan L; Gan G; Knight D; With SI; He C; Han J; Zeng X; Fang M; Boulianne GL; Xie W
    J Neurosci; 2011 Jan; 31(2):687-99. PubMed ID: 21228178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic ultrastructure in nerve terminals of Drosophila larvae overexpressing the learning gene dunce.
    Shayan AJ; Atwood HL
    J Neurobiol; 2000 Apr; 43(1):89-97. PubMed ID: 10756069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the embryonic neuromuscular synapse of Drosophila melanogaster.
    Broadie KS; Bate M
    J Neurosci; 1993 Jan; 13(1):144-66. PubMed ID: 8093713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila larvae during normal and prolonged development.
    Li H; Cooper RL
    Neuroscience; 2001; 106(1):193-200. PubMed ID: 11564429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system.
    Cheung US; Shayan AJ; Boulianne GL; Atwood HL
    J Neurobiol; 1999 Jul; 40(1):1-13. PubMed ID: 10398067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae.
    Badre NH; Martin ME; Cooper RL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Mar; 140(3):363-76. PubMed ID: 15792602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halothane presynaptically depresses synaptic transmission in wild-type Drosophila larvae but not in halothane-resistant (har) mutants.
    Nishikawa K; Kidokoro Y
    Anesthesiology; 1999 Jun; 90(6):1691-7. PubMed ID: 10360868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae.
    Ormerod KG; Jung J; Mercier AJ
    J Neurogenet; 2018 Sep; 32(3):183-194. PubMed ID: 30303434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction.
    Rival T; Soustelle L; Cattaert D; Strambi C; Iché M; Birman S
    J Neurobiol; 2006 Sep; 66(10):1061-74. PubMed ID: 16838372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses.
    Lee SH; Kim YJ; Choi SY
    Biochem Biophys Res Commun; 2016 Oct; 479(3):440-446. PubMed ID: 27671198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses.
    Karunanithi S; Marin L; Wong K; Atwood HL
    J Neurosci; 2002 Dec; 22(23):10267-76. PubMed ID: 12451127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-Dependent Global Downscaling of Evoked Neurotransmitter Release across Glutamatergic Inputs in
    Karunanithi S; Lin YQ; Odierna GL; Menon H; Gonzalez JM; Neely GG; Noakes PG; Lavidis NA; Moorhouse AJ; van Swinderen B
    J Neurosci; 2020 Oct; 40(42):8025-8041. PubMed ID: 32928887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.