BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10992256)

  • 1. Possible role of the receptor protein tyrosine phosphatase HmLAR2 in interbranch repulsion in a leech embryonic cell.
    Baker MW; Rauth SJ; Macagno ER
    J Neurobiol; 2000 Oct; 45(1):47-60. PubMed ID: 10992256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse.
    Baker MW; Macagno ER
    Curr Biol; 2000 Sep; 10(17):1071-4. PubMed ID: 10996077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The receptor phosphatase HmLAR2 collaborates with focal adhesion proteins in filopodial tips to control growth cone morphology.
    Baker MW; Peterson SM; Macagno ER
    Dev Biol; 2008 Aug; 320(1):215-25. PubMed ID: 18582860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The leech receptor protein tyrosine phosphatase HmLAR2 is concentrated in growth cones and is involved in process outgrowth.
    Gershon TR; Baker MW; Nitabach M; Macagno ER
    Development; 1998 Apr; 125(7):1183-90. PubMed ID: 9477317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two receptor tyrosine phosphatases of the LAR family are expressed in the developing leech by specific central neurons as well as select peripheral neurons, muscles, and other cells.
    Gershon TR; Baker MW; Nitabach M; Wu P; Macagno ER
    J Neurosci; 1998 Apr; 18(8):2991-3002. PubMed ID: 9526016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo imaging of growth cone and filopodial dynamics: evidence for contact-mediated retraction of filopodia leading to the tiling of sibling processes.
    Baker MW; Macagno ER
    J Comp Neurol; 2007 Feb; 500(5):850-62. PubMed ID: 17177256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression levels of a LAR-like receptor protein tyrosine phosphatase correlate with neuronal branching and arbor density in the medicinal leech.
    Baker MW; Macagno ER
    Dev Biol; 2010 Aug; 344(1):346-57. PubMed ID: 20541541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of LAR-like receptor protein tyrosine phosphatases with an enabled homolog in Hirudo medicinalis.
    Biswas SC; Dutt A; Baker MW; Macagno ER
    Mol Cell Neurosci; 2002 Dec; 21(4):657-70. PubMed ID: 12504598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth cone steering by receptor tyrosine phosphatase delta defines a distinct class of guidance cue.
    Sun QL; Wang J; Bookman RJ; Bixby JL
    Mol Cell Neurosci; 2000 Nov; 16(5):686-95. PubMed ID: 11083928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase.
    Fox AN; Zinn K
    Curr Biol; 2005 Oct; 15(19):1701-11. PubMed ID: 16213816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of an identified array of growth cones and possible substrates for guidance in the embryonic medicinal leech, Hirudo medicinalis.
    Kopp DM; Jellies J
    Cell Tissue Res; 1994 May; 276(2):281-93. PubMed ID: 8020064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor tyrosine phosphatases guide vertebrate motor axons during development.
    Stepanek L; Stoker AW; Stoeckli E; Bixby JL
    J Neurosci; 2005 Apr; 25(15):3813-23. PubMed ID: 15829633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRYP-2/cPTPRO is a neurite inhibitory repulsive guidance cue for retinal neurons in vitro.
    Stepanek L; Sun QL; Wang J; Wang C; Bixby JL
    J Cell Biol; 2001 Aug; 154(4):867-78. PubMed ID: 11514594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor protein-tyrosine phosphatase signalling in development.
    den Hertog J; Blanchetot C; Buist A; Overvoorde J; van der Sar A; Tertoolen LG
    Int J Dev Biol; 1999; 43(7):723-33. PubMed ID: 10668981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.
    Sethi J; Zhao B; Cuvillier-Hot V; Boidin-Wichlacz C; Salzet M; Macagno ER; Baker MW
    Mol Cell Neurosci; 2010 Dec; 45(4):430-8. PubMed ID: 20708686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimorphic growth cones in the embryonic medicinal leech: relationship between shape changes and outgrowth transitions.
    Kopp DM; Jellies J
    J Comp Neurol; 1993 Feb; 328(3):393-405. PubMed ID: 8440787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oblique muscle organizer in Hirudo medicinalis, an identified embryonic cell projecting multiple parallel growth cones in an orderly array.
    Jellies J; Kristan WB
    Dev Biol; 1991 Nov; 148(1):334-54. PubMed ID: 1936570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia.
    Brown MD; Cornejo BJ; Kuhn TB; Bamburg JR
    J Neurobiol; 2000 Jun; 43(4):352-64. PubMed ID: 10861561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse signaling via a glycosyl-phosphatidylinositol-linked ephrin prevents midline crossing by migratory neurons during embryonic development in Manduca.
    Coate TM; Wirz JA; Copenhaver PF
    J Neurosci; 2008 Apr; 28(15):3846-60. PubMed ID: 18400884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment.
    Avwenagha O; Campbell G; Bird MM
    J Neurocytol; 2003 Nov; 32(9):1077-89. PubMed ID: 15044840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.