BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10992517)

  • 1. Differential sensitivities of Chlamydia trachomatis strains to inhibitory effects of gamma interferon.
    Morrison RP
    Infect Immun; 2000 Oct; 68(10):6038-40. PubMed ID: 10992517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Ureaplasma parvum co-incubation on Chlamydia trachomatis maturation in human epithelial HeLa cells treated with interferon-γ.
    Yamazaki T; Matsuo J; Nakamura S; Oguri S; Yamaguchi H
    J Infect Chemother; 2014 Aug; 20(8):460-4. PubMed ID: 24855914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of interferon-mediated inhibition of Chlamydia infection by interleukin-1 in human macrophage cultures.
    Carlin JM; Weller JB
    Infect Immun; 1995 May; 63(5):1870-5. PubMed ID: 7537250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.
    Rahman MA; Azuma Y; Fukunaga H; Murakami T; Sugi K; Fukushi H; Miura K; Suzuki H; Shirai M
    J Antimicrob Chemother; 2005 Nov; 56(5):861-8. PubMed ID: 16172105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of gamma interferon on Chlamydia trachomatis growth in polarized and nonpolarized human epithelial cells in culture.
    Kane CD; Byrne GI
    Infect Immun; 1998 May; 66(5):2349-51. PubMed ID: 9573129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of chlamydia trachomatis growth by human interferon-alpha: mechanisms and synergistic effect with interferon-gamma and tumor necrosis factor-alpha.
    Ishihara T; Aga M; Hino K; Ushio C; Taniguchi M; Iwaki K; Ikeda M; Kurimoto M
    Biomed Res; 2005 Aug; 26(4):179-85. PubMed ID: 16152734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence.
    Beatty WL; Belanger TA; Desai AA; Morrison RP; Byrne GI
    Infect Immun; 1994 Sep; 62(9):3705-11. PubMed ID: 8063385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro.
    Beatty WL; Byrne GI; Morrison RP
    Proc Natl Acad Sci U S A; 1993 May; 90(9):3998-4002. PubMed ID: 8387206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis?
    Coles AM; Reynolds DJ; Harper A; Devitt A; Pearce JH
    FEMS Microbiol Lett; 1993 Jan; 106(2):193-200. PubMed ID: 8454184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of gamma interferon-mediated cytotoxicity to chlamydia-infected fibroblasts.
    Byrne GI; Schobert CS; Williams DM; Krueger DA
    Infect Immun; 1989 Mar; 57(3):870-4. PubMed ID: 2492975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of growth of Chlamydia trachomatis by human gamma interferon.
    Shemer Y; Sarov I
    Infect Immun; 1985 May; 48(2):592-6. PubMed ID: 2985506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications for persistent chlamydial infections of phagocyte-microorganism interplay.
    Sarov I; Geron E; Shemer-Avni Y; Manor E; Zvillich M; Wallach D; Schmitz E; Holtman H
    Eur J Clin Microbiol Infect Dis; 1991 Feb; 10(2):119-23. PubMed ID: 1907541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative in vitro activity of garenoxacin against Chlamydia spp.
    Donati M; Pollini GM; Sparacino M; Fortugno MT; Laghi E; Cevenini R
    J Antimicrob Chemother; 2002 Sep; 50(3):407-10. PubMed ID: 12205067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferon-gamma mediates long-term persistent Chlamydia psittaci infection in vitro.
    Brown J; Entrican G
    J Comp Pathol; 1996 Nov; 115(4):373-83. PubMed ID: 9004079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells.
    Roshick C; Wood H; Caldwell HD; McClarty G
    Infect Immun; 2006 Jan; 74(1):225-38. PubMed ID: 16368976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antichlamydial activity of ofloxacin.
    Hirai K; Une T
    Microbiol Immunol; 1986; 30(5):445-50. PubMed ID: 3462450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivation of persistent Chlamydia trachomatis infection in cell culture.
    Beatty WL; Morrison RP; Byrne GI
    Infect Immun; 1995 Jan; 63(1):199-205. PubMed ID: 7806358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of spiramycin against chlamydia, in vitro and in vivo.
    Orfila J; Haider F; Thomas D
    J Antimicrob Chemother; 1988 Jul; 22 Suppl B():73-6. PubMed ID: 3182449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation.
    Belland RJ; Nelson DE; Virok D; Crane DD; Hogan D; Sturdevant D; Beatty WL; Caldwell HD
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15971-6. PubMed ID: 14673075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp.
    Binet R; Maurelli AT
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2865-73. PubMed ID: 15980362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.