These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 10992808)
1. A bone replaceable artificial bone substitute: morphological and physiochemical characterizations. Park JC; Han DW; Suh H Yonsei Med J; 2000 Aug; 41(4):468-76. PubMed ID: 10992808 [TBL] [Abstract][Full Text] [Related]
2. A bone replaceable artificial bone substitute: cytotoxicity, cell adhesion, proliferation, and alkaline phosphatase activity. Suh H; Park JC; Han DW; Lee DH; Han CD Artif Organs; 2001 Jan; 25(1):14-21. PubMed ID: 11167554 [TBL] [Abstract][Full Text] [Related]
3. A bone replaceable artificial bone substitute: osteoinduction by combining with bone inducing agent. Suh H; Han DW; Park JC; Lee DH; Lee WS; Han CD Artif Organs; 2001 Jun; 25(6):459-66. PubMed ID: 11453876 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable ceramic-collagen composite implanted in rabbit tibiae. Suh H; Lee C ASAIO J; 1995; 41(3):M652-6. PubMed ID: 8573885 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature on crystallinity of carbonate apatite foam prepared from alpha-tricalcium phosphate by hydrothermal treatment. Takeuchi A; Munar ML; Wakae H; Maruta M; Matsuya S; Tsuru K; Ishikawa K Biomed Mater Eng; 2009; 19(2-3):205-11. PubMed ID: 19581715 [TBL] [Abstract][Full Text] [Related]
6. The development of carbonate-containing apatite/collagen composite for osteoconductive apical barrier material. Takenaka Y; Iijima M; Kawano S; Akita Y; Yoshida T; Doi Y; Sekine I J Endod; 2008 Sep; 34(9):1096-100. PubMed ID: 18718373 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions. Wakae H; Takeuchi A; Udoh K; Matsuya S; Munar ML; LeGeros RZ; Nakasima A; Ishikawa K J Biomed Mater Res A; 2008 Dec; 87(4):957-63. PubMed ID: 18257056 [TBL] [Abstract][Full Text] [Related]
8. Stability and cellular responses to fluorapatite-collagen composites. Yoon BH; Kim HW; Lee SH; Bae CJ; Koh YH; Kong YM; Kim HE Biomaterials; 2005 Jun; 26(16):2957-63. PubMed ID: 15603790 [TBL] [Abstract][Full Text] [Related]
9. Superplastic deformation in carbonate apatite ceramics under constant compressive loading for near-net-shape production of bioresorbable bone substitutes. Adachi M; Wakamatsu N; Doi Y Dent Mater J; 2008 Jan; 27(1):93-8. PubMed ID: 18309617 [TBL] [Abstract][Full Text] [Related]
10. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. Leeuwenburgh SC; Jansen JA; Mikos AG J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519 [TBL] [Abstract][Full Text] [Related]
11. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach. Sader MS; Martins VC; Gomez S; LeGeros RZ; Soares GA Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4188-96. PubMed ID: 23910332 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. Yamasaki Y; Yoshida Y; Okazaki M; Shimazu A; Uchida T; Kubo T; Akagawa Y; Hamada Y; Takahashi J; Matsuura N J Biomed Mater Res; 2002 Oct; 62(1):99-105. PubMed ID: 12124791 [TBL] [Abstract][Full Text] [Related]
13. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Sionkowska A; Kozłowska J Int J Biol Macromol; 2010 Nov; 47(4):483-7. PubMed ID: 20637799 [TBL] [Abstract][Full Text] [Related]
14. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
15. Zinc-coated carbonate apatite derived from avian eggshell for potential use as bone substitute. Part I: preparation and properties. Cai YD; Wang SM; Chou AH; Yu LY; Sun J Implant Dent; 2012 Jun; 21(3):230-5. PubMed ID: 22584418 [TBL] [Abstract][Full Text] [Related]
16. Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study. Ren F; Ding Y; Leng Y J Biomed Mater Res A; 2014 Feb; 102(2):496-505. PubMed ID: 23533194 [TBL] [Abstract][Full Text] [Related]
17. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen. Li X; Chang J J Biomed Mater Res A; 2008 May; 85(2):293-300. PubMed ID: 17688292 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of the metastable equilibrium solubility behavior of high-crystallinity and low-crystallinity carbonated apatites using pH and solution strontium as independent variables. Heslop DD; Bi Y; Baig AA; Otsuka M; Higuchi WI J Colloid Interface Sci; 2005 Sep; 289(1):14-25. PubMed ID: 15913637 [TBL] [Abstract][Full Text] [Related]
19. [Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation]. Gu H; He L; Liu L; Jin YC Zhonghua Shao Shang Za Zhi; 2008 Apr; 24(2):114-7. PubMed ID: 18785411 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure. Zou C; Weng W; Deng X; Cheng K; Liu X; Du P; Shen G; Han G Biomaterials; 2005 Sep; 26(26):5276-84. PubMed ID: 15814125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]