These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 10993167)
1. Efficient synthesis of a sialyl T-antigen-linked glycopeptide by the chemoenzymatic method. Ajisaka K; Miyasato M Biosci Biotechnol Biochem; 2000 Aug; 64(8):1743-6. PubMed ID: 10993167 [TBL] [Abstract][Full Text] [Related]
2. Chemoenzymatic synthesis of a MUC1 glycopeptide carrying non-natural sialyl TF-beta O-glycan. Tanaka E; Nakahara Y; Kuroda Y; Takano Y; Kojima N; Hojo H; Nakahara Y Biosci Biotechnol Biochem; 2006 Oct; 70(10):2515-22. PubMed ID: 17031043 [TBL] [Abstract][Full Text] [Related]
3. Chemoenzymatic synthesis of sialylated glycopeptides derived from mucins and T-cell stimulating peptides. George SK; Schwientek T; Holm B; Reis CA; Clausen H; Kihlberg J J Am Chem Soc; 2001 Nov; 123(45):11117-25. PubMed ID: 11697954 [TBL] [Abstract][Full Text] [Related]
4. Efficient enzymatic synthesis of 4-methylumbelliferyl N-acetyllactosaminide and 4-methylumbelliferyl sialyl N-acetyllactosaminides employing beta-D-galactosidase and sialyltransferases. Zeng X; Sun Y; Uzawa H Biotechnol Lett; 2005 Oct; 27(19):1461-5. PubMed ID: 16231217 [TBL] [Abstract][Full Text] [Related]
5. Linkage of sugar chains to a fragment peptide of FGF-5S by a chemoenzymatic strategy and changes in the rate of proteolytic hydrolysis. Ajisaka K; Miyasato M; Ito C; Fujita Y; Yamazaki Y; Oka S Glycoconj J; 2001 Apr; 18(4):301-8. PubMed ID: 11788798 [TBL] [Abstract][Full Text] [Related]
6. Purification and properties of recombinant beta-galactosidase from Bacillus circulans. Fujimoto H; Miyasato M; Ito Y; Sasaki T; Ajisaka K Glycoconj J; 1998 Feb; 15(2):155-60. PubMed ID: 9557875 [TBL] [Abstract][Full Text] [Related]
7. Galactosyl transfer onto p-nitrophenyl beta-D-glucoside using beta-D-galactosidase from Bacillus circulans. Murata T; Akimoto S; Horimoto M; Usui T Biosci Biotechnol Biochem; 1997 Jul; 61(7):1118-20. PubMed ID: 9255974 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic synthesis of a beta-D-galactopyranosyl cyclic tetrasaccharide by beta-galactosidases. Higashiyama T; Watanabe H; Aga H; Nishimoto T; Kubota M; Fukuda S; Kurimoto M; Tsujisaka Y Carbohydr Res; 2004 Jun; 339(9):1603-8. PubMed ID: 15183734 [TBL] [Abstract][Full Text] [Related]
9. Efficient synthesis of O-linked glycopeptide by a transglycosylation using endo alpha-N-acetylgalactosaminidase from Streptomyces sp. Ajisaka K; Miyasato M; Ishii-Karakasa I Biosci Biotechnol Biochem; 2001 May; 65(5):1240-3. PubMed ID: 11440149 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of tumor-associated glycopeptide antigens for the development of tumor-selective vaccines. Dziadek S; Kunz H Chem Rec; 2004; 3(6):308-21. PubMed ID: 14991920 [TBL] [Abstract][Full Text] [Related]
11. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens. Okamoto R; Souma S; Kajihara Y J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic synthesis of the tumor-associated (2,3)-sialyl-T antigen and its incorporation into glycopeptide antigens from the mucins MUC1 and MUC4. Dziadek S; Brocke C; Kunz H Chemistry; 2004 Sep; 10(17):4150-62. PubMed ID: 15352098 [TBL] [Abstract][Full Text] [Related]
13. Application of the trichloroacetimidate method to the synthesis of glycopeptides of the mucin type containing a beta-D-Galp-(1----3)-D-GalpNAc unit. Kinzy W; Schmidt RR Carbohydr Res; 1987 Jul; 164():265-76. PubMed ID: 3621238 [TBL] [Abstract][Full Text] [Related]
14. Complete synthesis of 3'-sialyl-N-acetyllactosamine by regioselective transglycosylation. Vetere A; Paoletti S FEBS Lett; 1996 Dec; 399(3):203-6. PubMed ID: 8985145 [TBL] [Abstract][Full Text] [Related]
15. Oligosaccharide-peptide ligation of glycosyl thiolates with dehydropeptides: synthesis of S-linked mucin-related glycopeptide conjugates. Galonić DP; Van Der Donk WA; Gin DY Chemistry; 2003 Dec; 9(24):5997-6006. PubMed ID: 14679512 [TBL] [Abstract][Full Text] [Related]
16. Galactosylation of thiol group by beta-galactosidase. Nakano H; Shizuma M; Kiso T; Kitahata S Biosci Biotechnol Biochem; 2000 Apr; 64(4):735-40. PubMed ID: 10830485 [TBL] [Abstract][Full Text] [Related]
17. Construction of highly glycosylated mucin-type glycopeptides based on microwave-assisted solid-phase syntheses and enzymatic modifications. Matsushita T; Hinou H; Fumoto M; Kurogochi M; Fujitani N; Shimizu H; Nishimura S J Org Chem; 2006 Apr; 71(8):3051-63. PubMed ID: 16599599 [TBL] [Abstract][Full Text] [Related]
18. An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Hashimoto R; Fujitani N; Takegawa Y; Kurogochi M; Matsushita T; Naruchi K; Ohyabu N; Hinou H; Gao XD; Manri N; Satake H; Kaneko A; Sakamoto T; Nishimura S Chemistry; 2011 Feb; 17(8):2393-404. PubMed ID: 21264968 [TBL] [Abstract][Full Text] [Related]
19. Parallel solid-phase synthesis of mucin-like glycopeptides. Liu M; Barany G; Live D Carbohydr Res; 2005 Sep; 340(13):2111-22. PubMed ID: 16026772 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the specificities of human blood group H gene-specified alpha 1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between alpha 1,2-L-fucosylation of Gal and alpha 1,6-L-fucosylation of asparagine-linked GlcNAc. Chandrasekaran EV; Jain RK; Larsen RD; Wlasichuk K; Matta KL Biochemistry; 1996 Jul; 35(27):8914-24. PubMed ID: 8688427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]