These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10993349)

  • 1. W(CO)6-catalyzed oxidative carbonylation of primary amines to N,N'-disubstituted ureas in single or biphasic solvent systems. Optimization and functional group compatibility studies.
    McCusker JE; Main AD; Johnson KS; Grasso CA; McElwee-White L
    J Org Chem; 2000 Aug; 65(17):5216-22. PubMed ID: 10993349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective and environmentally friendly methodologies based on the use of electrochemistry for fine chemical preparation: an efficient synthesis of N,N'-disubstituted ureas.
    Chiarotto I; Feroci M
    J Org Chem; 2003 Sep; 68(18):7137-9. PubMed ID: 12946168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palladium-mediated oxidative carbonylation reactions for the synthesis of (11) C-radiolabelled ureas.
    Kealey S; Husbands SM; Bennacef I; Gee AD; Passchier J
    J Labelled Comp Radiopharm; 2014 Apr; 57(4):202-8. PubMed ID: 24327390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pd(OAc)2-catalyzed carbonylation of amines.
    Orito K; Miyazawa M; Nakamura T; Horibata A; Ushito H; Nagasaki H; Yuguchi M; Yamashita S; Yamazaki T; Tokuda M
    J Org Chem; 2006 Aug; 71(16):5951-8. PubMed ID: 16872177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient synthesis of ureas by direct palladium-catalyzed oxidative carbonylation of amines.
    Gabriele B; Salerno G; Mancuso R; Costa M
    J Org Chem; 2004 Jul; 69(14):4741-50. PubMed ID: 15230597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic oxidative carbonylation of primary and secondary diamines to cyclic ureas. Optimization and substituent studies.
    Qian F; McCusker JE; Zhang Y; Main AD; Chlebowski M; Kokka M; McElwee-White L
    J Org Chem; 2002 Jun; 67(12):4086-92. PubMed ID: 12054942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective catalytic oxidative carbonylation of amino alcohols to ureas.
    Díaz DJ; Hylton KG; McElwee-White L
    J Org Chem; 2006 Jan; 71(2):734-8. PubMed ID: 16408987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switchable palladium-catalyst reaction of bromomethyl sulfoxides, CO, and N-nucleophiles: aminocarbonylation at Csp3 versus oxidative carbonylation of amines.
    Mollar C; Ramirez de Arellano C; Medio-Simón M; Asensio G
    J Org Chem; 2012 Nov; 77(21):9693-701. PubMed ID: 23039243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NaIO4-oxidized carbonylation of amines to ureas.
    Shelton PA; Zhang Y; Nguyen TH; McElwee-White L
    Chem Commun (Camb); 2009 Feb; (8):947-9. PubMed ID: 19214325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A solid-phase synthesis of N,N'-disubstituted ureas and Perhydroimidazo.
    Migawa MT; Swayze EE
    Org Lett; 2000 Oct; 2(21):3309-11. PubMed ID: 11029197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pd(II)/Ag(I)-Promoted One-Pot Synthesis of Cyclic Ureas from (Hetero)Aromatic Amines and Isocyanates.
    Youn SW; Kim YH
    Org Lett; 2016 Dec; 18(23):6140-6143. PubMed ID: 27934371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further characterization of Mitsunobu-type intermediates in the reaction of dialkyl azodicarboxylates with P(III) compounds.
    Swamy KC; Kumar KP; Kumar NN
    J Org Chem; 2006 Feb; 71(3):1002-8. PubMed ID: 16438512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Palladium(II)-Catalyzed Carbonylation of Methylene β-C-H Bonds in Aliphatic Amines.
    Cabrera-Pardo JR; Trowbridge A; Nappi M; Ozaki K; Gaunt MJ
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11958-11962. PubMed ID: 28707312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoselective isocyanide insertion into the N-H bond using iodine-DMSO: metal-free access to substituted ureas.
    Bora P; Bez G
    Chem Commun (Camb); 2018 Jul; 54(60):8363-8366. PubMed ID: 29993058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel Pd-catalyzed N-dealkylative carbonylation of tertiary amines for the preparation of amides.
    Fang T; Gao XH; Tang RY; Zhang XG; Deng CL
    Chem Commun (Camb); 2014 Dec; 50(94):14775-7. PubMed ID: 25317723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-Catalyzed Ortho-Selective C-H Oxidative Carbonylation of N-Substituted Anilines with CO and Primary Amines for the Synthesis of o-Aminobenzamides.
    Zhang X; Dong S; Niu X; Li Z; Fan X; Zhang G
    Org Lett; 2016 Sep; 18(18):4634-7. PubMed ID: 27583815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Debenzylation of tertiary amines using phosgene or triphosgene: an efficient and rapid procedure for the preparation of carbamoyl chlorides and unsymmetrical ureas. Application in carbon-11 chemistry.
    Lemoucheux L; Rouden J; Ibazizene M; Sobrio F; Lasne MC
    J Org Chem; 2003 Sep; 68(19):7289-97. PubMed ID: 12968878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practically simple, catalyst free and scalable synthesis of
    Tiwari L; Kumar V; Kumar B; Mahajan D
    RSC Adv; 2018 Jun; 8(38):21585-21595. PubMed ID: 35539945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu-catalyzed cyanomethylation of imines and α,β-alkenes with acetonitrile and its derivatives.
    Ahmad MS; Ahmad A
    RSC Adv; 2021 Jan; 11(10):5427-5431. PubMed ID: 35423113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NaCl as Catalyst and Water as Solvent: Highly
    Hazra S; Tiwari V; Verma A; Dolui P; Elias AJ
    Org Lett; 2020 Jul; 22(14):5496-5501. PubMed ID: 32603129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.