These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 10993414)
1. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Swartz AM; Strath SJ; Bassett DR; O'Brien WL; King GA; Ainsworth BE Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S450-6. PubMed ID: 10993414 [TBL] [Abstract][Full Text] [Related]
2. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969 [TBL] [Abstract][Full Text] [Related]
3. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data. Montoye AHK; Begum M; Henning Z; Pfeiffer KA Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205 [TBL] [Abstract][Full Text] [Related]
4. Validity of four motion sensors in measuring moderate intensity physical activity. Bassett DR; Ainsworth BE; Swartz AM; Strath SJ; O'Brien WL; King GA Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S471-80. PubMed ID: 10993417 [TBL] [Abstract][Full Text] [Related]
5. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Lyden K; Kozey SL; Staudenmeyer JW; Freedson PS Eur J Appl Physiol; 2011 Feb; 111(2):187-201. PubMed ID: 20842375 [TBL] [Abstract][Full Text] [Related]
7. Wrist-independent energy expenditure prediction models from raw accelerometer data. Montoye AH; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA Physiol Meas; 2016 Oct; 37(10):1770-1784. PubMed ID: 27653642 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study. Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809 [TBL] [Abstract][Full Text] [Related]
9. Predicting energy expenditure from accelerometry counts in adolescent girls. Schmitz KH; Treuth M; Hannan P; McMurray R; Ring KB; Catellier D; Pate R Med Sci Sports Exerc; 2005 Jan; 37(1):155-61. PubMed ID: 15632682 [TBL] [Abstract][Full Text] [Related]
10. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Hendelman D; Miller K; Baggett C; Debold E; Freedson P Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S442-9. PubMed ID: 10993413 [TBL] [Abstract][Full Text] [Related]
11. Triaxial accelerometer output predicts oxygen uptake in adults with Down syndrome. Allred AT; Choi P; Agiovlasitis S Disabil Rehabil; 2021 Sep; 43(18):2602-2609. PubMed ID: 31880164 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children's Discrete Skill Performance. Sacko R; McIver K; Brazendale K; Pfeifer C; Brian A; Nesbitt D; Stodden DF Res Q Exerc Sport; 2019 Dec; 90(4):629-640. PubMed ID: 31441713 [No Abstract] [Full Text] [Related]
13. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510 [TBL] [Abstract][Full Text] [Related]
14. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth. Choi L; Chen KY; Acra SA; Buchowski MS J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770 [TBL] [Abstract][Full Text] [Related]
15. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age. Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155 [TBL] [Abstract][Full Text] [Related]
16. Validation of a wireless accelerometer network for energy expenditure measurement. Montoye AH; Dong B; Biswas S; Pfeiffer KA J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316 [TBL] [Abstract][Full Text] [Related]
17. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living. Montoye AH; Mudd LM; Biswas S; Pfeiffer KA Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392 [TBL] [Abstract][Full Text] [Related]
18. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach. Mackintosh KA; Montoye AH; Pfeiffer KA; McNarry MA Physiol Meas; 2016 Oct; 37(10):1728-1740. PubMed ID: 27653339 [TBL] [Abstract][Full Text] [Related]
19. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Rosenberger ME; Haskell WL; Albinali F; Mota S; Nawyn J; Intille S Med Sci Sports Exerc; 2013 May; 45(5):964-75. PubMed ID: 23247702 [TBL] [Abstract][Full Text] [Related]
20. Use of a Wireless Network of Accelerometers for Improved Measurement of Human Energy Expenditure. Montoye AH; Dong B; Biswas S; Pfeiffer KA Electronics (Basel); 2014; 3(2):205-220. PubMed ID: 25530874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]