These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10993419)

  • 21. Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test.
    Kendall B; Bellovary B; Gothe NP
    J Sports Sci; 2019 Jan; 37(1):42-49. PubMed ID: 29863968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure.
    Vetrovsky T; Siranec M; Marencakova J; Tufano JJ; Capek V; Bunc V; Belohlavek J
    PLoS One; 2019; 14(9):e0222569. PubMed ID: 31518367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reliability of accelerometry-based activity monitors: a generalizability study.
    Welk GJ; Schaben JA; Morrow JR
    Med Sci Sports Exerc; 2004 Sep; 36(9):1637-45. PubMed ID: 15354049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy of Consumer Monitors for Estimating Energy Expenditure and Activity Type.
    Woodman JA; Crouter SE; Bassett DR; Fitzhugh EC; Boyer WR
    Med Sci Sports Exerc; 2017 Feb; 49(2):371-377. PubMed ID: 27580155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of a computerized physical activity recall with a triaxial motion sensor in middle-school youth.
    McMurray RG; Harrell JS; Bradley CB; Webb JP; Goodman EM
    Med Sci Sports Exerc; 1998 Aug; 30(8):1238-45. PubMed ID: 9710863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The accuracy of the TriTrac-R3D accelerometer to estimate energy expenditure.
    Jakicic JM; Winters C; Lagally K; Ho J; Robertson RJ; Wing RR
    Med Sci Sports Exerc; 1999 May; 31(5):747-54. PubMed ID: 10331898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.
    Ferguson T; Rowlands AV; Olds T; Maher C
    Int J Behav Nutr Phys Act; 2015 Mar; 12():42. PubMed ID: 25890168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Consumer and Research Monitors under Semistructured Settings.
    Bai Y; Welk GJ; Nam YH; Lee JA; Lee JM; Kim Y; Meier NF; Dixon PM
    Med Sci Sports Exerc; 2016 Jan; 48(1):151-8. PubMed ID: 26154336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children.
    Rodriguez G; Béghin L; Michaud L; Moreno LA; Turck D; Gottrand F
    Br J Nutr; 2002 Jun; 87(6):623-31. PubMed ID: 12067433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of accelerometers with oxygen consumption in older adults during exercise.
    Fehling PC; Smith DL; Warner SE; Dalsky GP
    Med Sci Sports Exerc; 1999 Jan; 31(1):171-5. PubMed ID: 9927026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validity of the Computer Science and Applications, Inc. (CSA) activity monitor.
    Melanson EL; Freedson PS
    Med Sci Sports Exerc; 1995 Jun; 27(6):934-40. PubMed ID: 7658958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The validity of the commercially-available, low-cost, wrist-worn Movband accelerometer during treadmill exercise and free-living physical activity.
    Barkley JE; Glickman E; Fennell C; Kobak M; Frank M; Farnell G
    J Sports Sci; 2019 Apr; 37(7):735-740. PubMed ID: 30238836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.
    Boudreaux BD; Hebert EP; Hollander DB; Williams BM; Cormier CL; Naquin MR; Gillan WW; Gusew EE; Kraemer RR
    Med Sci Sports Exerc; 2018 Mar; 50(3):624-633. PubMed ID: 29189666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity of Physical Activity Monitors for Estimating Energy Expenditure During Wheelchair Propulsion.
    Conger SA; Scott SN; Fitzhugh EC; Thompson DL; Bassett DR
    J Phys Act Health; 2015 Nov; 12(11):1520-6. PubMed ID: 25635408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices.
    Dooley EE; Golaszewski NM; Bartholomew JB
    JMIR Mhealth Uhealth; 2017 Mar; 5(3):e34. PubMed ID: 28302596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Criterion Validity of Competing Accelerometry-Based Activity Monitoring Devices.
    Kim Y; Welk GJ
    Med Sci Sports Exerc; 2015 Nov; 47(11):2456-63. PubMed ID: 25910051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of activity monitors in controlled and free-living environments.
    Feito Y; Bassett DR; Thompson DL
    Med Sci Sports Exerc; 2012 Apr; 44(4):733-41. PubMed ID: 21904249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving energy expenditure estimation by using a triaxial accelerometer.
    Chen KY; Sun M
    J Appl Physiol (1985); 1997 Dec; 83(6):2112-22. PubMed ID: 9390989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.