These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10993629)

  • 21. Chromosome aberrations as biomarkers of radiation exposure: modelling basic mechanisms.
    Ballarini F; Ottolenghi A
    Adv Space Res; 2003; 31(6):1557-68. PubMed ID: 12971411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosomes are predominantly located randomly with respect to each other in interphase human cells.
    Cornforth MN; Greulich-Bode KM; Loucas BD; Arsuaga J; Vázquez M; Sachs RK; Brückner M; Molls M; Hahnfeldt P; Hlatky L; Brenner DJ
    J Cell Biol; 2002 Oct; 159(2):237-44. PubMed ID: 12403811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Centric rings, acentric rings and excess acentric fragments based on a random-walk interphase chromosome model.
    Wu H; Durante M; Sachs RK; Yang TC
    Int J Radiat Biol; 1997 May; 71(5):487-96. PubMed ID: 9191893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2018 Apr; 64():45-52. PubMed ID: 29494834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interphase chromosome domain re-organization following irradiation.
    Figgitt M; Savage JR
    Int J Radiat Biol; 1999 Jul; 75(7):811-7. PubMed ID: 10489892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Rejoining pathways underlying intrachange formation depend on interphase chromosome structure].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 2001; 41(5):469-74. PubMed ID: 11721341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational model of dose response for low-LET-induced complex chromosomal aberrations.
    Eidelman YA; Andreev SG
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):80-5. PubMed ID: 25897145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. G0 chromosomal radiosensitivity in ataxia telangiectasia lymphocytes.
    Bender MA; Rary JM; Kale RP
    Mutat Res; 1985; 150(1-2):277-82. PubMed ID: 4000160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells.
    Foster HA; Estrada-Girona G; Themis M; Garimberti E; Hill MA; Bridger JM; Anderson RM
    Mutat Res; 2013 Aug; 756(1-2):66-77. PubMed ID: 23791770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromosomal aberration and sister-chromatid exchange frequencies in peripheral blood lymphocytes of a large human population sample.
    Bender MA; Preston RJ; Leonard RC; Pyatt BE; Gooch PC; Shelby MD
    Mutat Res; 1988 Mar; 204(3):421-33. PubMed ID: 3347214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Globular model of interphase chromosome and intrachromosomal exchange aberrations].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 1999; 39(1):10-20. PubMed ID: 10347593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Space radiation does not induce a significant increase of intrachromosomal exchanges in astronauts' lymphocytes.
    Horstmann M; Durante M; Johannes C; Pieper R; Obe G
    Radiat Environ Biophys; 2005 Dec; 44(3):219-24. PubMed ID: 16217644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Telomere staining of human chromosomes and the mechanism of radiation-induced dicentric formation.
    Cornforth MN; Meyne J; Littlefield LG; Bailey SM; Moyzis RK
    Radiat Res; 1989 Nov; 120(2):205-12. PubMed ID: 2482516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Analysis of chromosomal changes and sister chromatid exchanges in lymphocytes of children exposed to cerebral gammagraphy].
    Blanco B; Avila E; Carnevale A
    Rev Invest Clin; 1985; 37(4):337-40. PubMed ID: 3912877
    [No Abstract]   [Full Text] [Related]  

  • 36. Cell-stage dependence of the formation of SCEs and chromosomal aberrations.
    Ishii Y; Watatani M
    Basic Life Sci; 1984; 29 Pt A():173-80. PubMed ID: 6442568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dose-response curves for X-ray induced interchanges and interarm intrachanges in human lymphocytes using arm-specific probes for chromosome 1.
    Boei JJ; Vermeulen S; Natarajan AT
    Mutat Res; 1998 Aug; 404(1-2):45-53. PubMed ID: 9729269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of chromosome lesions induced by gamma-rays during the G2 and mitotic phases of the cell cycle.
    Cadirola S; Dutrillaux B
    Ann Genet; 1984; 27(3):154-7. PubMed ID: 6334478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of formation of exchanges and rejoining of breaks in human G0 and G2 lymphocytes after low-LET radiation.
    Sipi P; Lindholm C; Salomaa S
    Int J Radiat Biol; 2000 Jun; 76(6):823-30. PubMed ID: 10902737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential radiation effects in smokers--culture time dependence of the yield of gamma ray-induced chromosome damage in first division metaphases.
    Krishnaja AP; Sharma NK
    Int J Radiat Biol; 2006 May; 82(5):363-77. PubMed ID: 16782654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.