These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 10993768)

  • 1. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation.
    Efimov IR; Cheng Y; Yamanouchi Y; Tchou PJ
    J Cardiovasc Electrophysiol; 2000 Aug; 11(8):861-8. PubMed ID: 10969748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode.
    Efimov IR; Cheng YN; Biermann M; Van Wagoner DR; Mazgalev TN; Tchou PJ
    J Cardiovasc Electrophysiol; 1997 Sep; 8(9):1031-45. PubMed ID: 9300301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart.
    Cheng Y; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2000 Sep; 11(9):998-1007. PubMed ID: 11021470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization.
    Anderson C; Trayanova N; Skouibine K
    J Cardiovasc Electrophysiol; 2000 Dec; 11(12):1386-96. PubMed ID: 11196563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of shock-induced vulnerability and defibrillation.
    Qu F; Li L; Nikolski VP; Sharma V; Efimov IR
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H569-77. PubMed ID: 15792989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual electrode-induced reexcitation: A mechanism of defibrillation.
    Cheng Y; Mowrey KA; Van Wagoner DR; Tchou PJ; Efimov IR
    Circ Res; 1999 Nov; 85(11):1056-66. PubMed ID: 10571537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the relationship between preshock state and virtual electrode polarization-induced propagated graded responses resulting in arrhythmia induction.
    Bourn DW; Gray RA; Trayanova NA
    Heart Rhythm; 2006 May; 3(5):583-95. PubMed ID: 16648066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.
    Ashihara T; Constantino J; Trayanova NA
    Circ Res; 2008 Mar; 102(6):737-45. PubMed ID: 18218982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual electrode effects in defibrillation.
    Trayanova N; Skouibine K; Moore P
    Prog Biophys Mol Biol; 1998; 69(2-3):387-403. PubMed ID: 9785947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping.
    Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F
    J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
    Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
    Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA
    Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postshock arrhythmogenesis in a slice of the canine heart.
    Hillebrenner MG; Eason JC; Campbell CA; Trayanova NA
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S249-56. PubMed ID: 14760930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vulnerability to electric shocks in the regionally-ischemic ventricles.
    Rodríguez B; Tice B; Blake R; Gavaghan D; Trayanova N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2280-3. PubMed ID: 17946101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pinwheel experiment re-revisited.
    Sambelashvili A; Efimov IR
    J Theor Biol; 2002 Jan; 214(2):147-53. PubMed ID: 11812169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation.
    Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE
    Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lidocaine on shock-induced vulnerability.
    Li L; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S237-48. PubMed ID: 14760929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.