BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10993891)

  • 1. Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylates.
    Bandell M; Lolkema JS
    J Biol Chem; 2000 Dec; 275(50):39130-6. PubMed ID: 10993891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselectivity of the membrane potential-generating citrate and malate transporters of lactic acid bacteria.
    Bandell M; Lolkema JS
    Biochemistry; 1999 Aug; 38(32):10352-60. PubMed ID: 10441129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conserved C-terminus of the citrate (CitP) and malate (MleP) transporters of lactic acid bacteria is involved in substrate recognition.
    Bandell M; Lolkema JS
    Biochemistry; 2000 Oct; 39(42):13059-67. PubMed ID: 11041872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides.
    Marty-Teysset C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Biol Chem; 1995 Oct; 270(43):25370-6. PubMed ID: 7592702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family.
    Bandell M; Ansanay V; Rachidi N; Dequin S; Lolkema JS
    J Biol Chem; 1997 Jul; 272(29):18140-6. PubMed ID: 9218448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved residues R420 and Q428 in a cytoplasmic loop of the citrate/malate transporter CimH of Bacillus subtilis are accessible from the external face of the membrane.
    Krom BP; Lolkema JS
    Biochemistry; 2003 Jan; 42(2):467-74. PubMed ID: 12525174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast mitochondrial citrate transport protein. Probing the roles of cysteines, Arg(181), and Arg(189) in transporter function.
    Xu Y; Kakhniashvili DA; Gremse DA; Wood DO; Mayor JA; Walters DE; Kaplan RS
    J Biol Chem; 2000 Mar; 275(10):7117-24. PubMed ID: 10702279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species.
    Bandell M; Lhotte ME; Marty-Teysset C; Veyrat A; Prévost H; Dartois V; Diviès C; Konings WN; Lolkema JS
    Appl Environ Microbiol; 1998 May; 64(5):1594-600. PubMed ID: 9572922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of the citrate transporter CitP of Lactococcus lactis.
    Pudlik AM; Lolkema JS
    J Bacteriol; 2012 Jul; 194(14):3627-35. PubMed ID: 22563050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter.
    Pajor AM
    J Biol Chem; 2001 Aug; 276(32):29961-8. PubMed ID: 11399753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights about the structural rearrangements required for substrate translocation in the bovine mitochondrial oxoglutarate carrier.
    Curcio R; Muto L; Pierri CL; Montalto A; Lauria G; Onofrio A; Fiorillo M; Fiermonte G; Lunetti P; Vozza A; Capobianco L; Cappello AR; Dolce V
    Biochim Biophys Acta; 2016 Nov; 1864(11):1473-80. PubMed ID: 27479487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus subtilis YxkJ is a secondary transporter of the 2-hydroxycarboxylate transporter family that transports L-malate and citrate.
    Krom BP; Aardema R; Lolkema JS
    J Bacteriol; 2001 Oct; 183(20):5862-9. PubMed ID: 11566984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate 59 is critical for transport function of the amino acid cotransporter KAAT1.
    Sacchi VF; Castagna M; Mari SA; Perego C; Bossi E; Peres A
    Am J Physiol Cell Physiol; 2003 Sep; 285(3):C623-32. PubMed ID: 12736138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter.
    Sekine T; Cha SH; Hosoyamada M; Kanai Y; Watanabe N; Furuta Y; Fukuda K; Igarashi T; Endou H
    Am J Physiol; 1998 Aug; 275(2):F298-305. PubMed ID: 9691021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of sodium and pyruvate interactions of the two carrier systems specific of mono- and di- or tricarboxylic acids by renal brush-border membrane vesicles.
    Mengual R; Claude-Schlageter MH; Poiree JC; Yagello M; Sudaka P
    J Membr Biol; 1989 Jun; 108(3):197-205. PubMed ID: 2778796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional aspects of rat microsomal glutathione transferase. The roles of cysteine 49, arginine 107, lysine 67, histidine, and tyrosine residues.
    Weinander R; Ekström L; Andersson C; Raza H; Bergman T; Morgenstern R
    J Biol Chem; 1997 Apr; 272(14):8871-7. PubMed ID: 9083005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dicarboxylate transport at the vacuolar membrane of the CAM plant Kalanchoë daigremontiana: sensitivity to protein-modifying and sulphydryl reagents.
    Bettey M; Smith JA
    Biochim Biophys Acta; 1993 Nov; 1152(2):270-9. PubMed ID: 8218327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of conserved transmembrane cationic amino acids in the prostaglandin transporter PGT.
    Chan BS; Bao Y; Schuster VL
    Biochemistry; 2002 Jul; 41(29):9215-21. PubMed ID: 12119036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternating access and a pore-loop structure in the Na+-citrate transporter CitS of Klebsiella pneumoniae.
    Sobczak I; Lolkema JS
    J Biol Chem; 2004 Jul; 279(30):31113-20. PubMed ID: 15148311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.