These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10994957)

  • 1. High-sensitivity stark spectroscopy obtained by surface plasmon resonance measurement.
    Wang S; Boussaad S; Wong S; Tao NJ
    Anal Chem; 2000 Sep; 72(17):4003-8. PubMed ID: 10994957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes.
    Chien FC; Chen SJ
    Biosens Bioelectron; 2004 Oct; 20(3):633-42. PubMed ID: 15494249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor.
    Nakkach M; Lecaruyer P; Bardin F; Sakly J; Ben Lakhdar Z; Canva M
    Appl Opt; 2008 Nov; 47(33):6177-82. PubMed ID: 19023380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a variable angle reflection Fourier transform infrared accessory modified for surface plasmon resonance spectroscopy.
    Menegazzo N; Kegel LL; Kim YC; Booksh KS
    Appl Spectrosc; 2010 Oct; 64(10):1181-6. PubMed ID: 20925990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of surface selection rule of surface plasmon resonance near-infrared spectroscopy by using a Langmuir-Blodgett film.
    Ohara K; Ikehata A; Hirano Y; Ozaki Y
    Anal Chem; 2007 Nov; 79(21):8406-10. PubMed ID: 17915939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-Sensitive Surface Plasmon Resonance Detection by Colocalized 3D Plasmonic Nanogap Arrays.
    Lee W; Son T; Lee C; Oh Y; Kim D
    Methods Mol Biol; 2017; 1571():15-29. PubMed ID: 28281247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the sensitivity limit of surface plasmon resonance biosensors by detecting mixed interference signals.
    Yuan W; Ho HP; Suen YK; Kong SK; Lin C
    Appl Opt; 2007 Nov; 46(33):8068-73. PubMed ID: 18026545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon resonance biomolecular recognition nanosystem: influence of the interfacial electrical potential.
    Lopatynskyi A; Guiver M; Chegel V
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6559-64. PubMed ID: 25924300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration.
    Perino M; Pasqualotto E; Scaramuzza M; De Toni A; Paccagnella A
    Opt Lett; 2015 Jan; 40(2):221-4. PubMed ID: 25679849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.
    Kegel LL; Menegazzo N; Booksh KS
    Anal Chem; 2013 May; 85(10):4875-83. PubMed ID: 23566015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon spectral fingerprinting of adsorbed magnesium phthalocyanine by angle and wavelength modulation.
    Zangeneh M; Doan N; Sambriski E; Terrill RH
    Appl Spectrosc; 2004 Jan; 58(1):10-7. PubMed ID: 14727715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms.
    Kegel LL; Boyne D; Booksh KS
    Anal Chem; 2014 Apr; 86(7):3355-64. PubMed ID: 24499170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light.
    Lin HY; Tsai WH; Tsao YC; Sheu BC
    Appl Opt; 2007 Feb; 46(5):800-6. PubMed ID: 17279169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy for sensitive detection of tumor markers.
    Arima Y; Teramura Y; Takiguchi H; Kawano K; Kotera H; Iwata H
    Methods Mol Biol; 2009; 503():3-20. PubMed ID: 19151933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near field detector for integrated surface plasmon resonance biosensor applications.
    Bora M; Celebi K; Zuniga J; Watson C; Milaninia KM; Baldo MA
    Opt Express; 2009 Jan; 17(1):329-36. PubMed ID: 19129901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4.
    Liu X; Sun Y; Song D; Zhang Q; Tian Y; Bi S; Zhang H
    Anal Biochem; 2004 Oct; 333(1):99-104. PubMed ID: 15351285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles.
    Chen SJ; Chien FC; Lin GY; Lee KC
    Opt Lett; 2004 Jun; 29(12):1390-2. PubMed ID: 15233445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry.
    Wang S; Forzani ES; Tao N
    Anal Chem; 2007 Jun; 79(12):4427-32. PubMed ID: 17503766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.