BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10995260)

  • 1. Effects of hepatotoxic doses of acetaminophen and furosemide on tissue concentrations of CoASH and CoASSG in vivo.
    Rogers LK; Valentine CJ; Szczpyka M; Smith CV
    Chem Res Toxicol; 2000 Sep; 13(9):873-82. PubMed ID: 10995260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CoASH and CoASSG levels in lungs of hyperoxic rats as potential biomarkers of intramitochondrial oxidant stresses.
    O'Donovan DJ; Rogers LK; Kelley DK; Welty SE; Ramsay PL; Smith CV
    Pediatr Res; 2002 Mar; 51(3):346-53. PubMed ID: 11861941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial thiol status in the liver is altered by exposure to hyperoxia.
    Wong YL; Smith CV; McMicken HW; Rogers LK; Welty SE
    Toxicol Lett; 2001 Sep; 123(2-3):179-93. PubMed ID: 11641046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol.
    Jaeschke H
    J Pharmacol Exp Ther; 1990 Dec; 255(3):935-41. PubMed ID: 2262912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fasting on tissue contents of coenzyme A and related intermediates in rats.
    Jenniskens FA; Jopperi-Davis KS; Walters LC; Schorr EN; Rogers LK; Welty SE; Smith CV
    Pediatr Res; 2002 Sep; 52(3):437-42. PubMed ID: 12193681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of acetaminophen on hepatic content and biliary efflux of glutathione disulfide in mice.
    Smith CV; Jaeschke H
    Chem Biol Interact; 1989; 70(3-4):241-8. PubMed ID: 2743472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of carbamyl phosphate synthetase-I and glutamine synthetase by hepatotoxic doses of acetaminophen in mice.
    Gupta S; Rogers LK; Taylor SK; Smith CV
    Toxicol Appl Pharmacol; 1997 Oct; 146(2):317-27. PubMed ID: 9344900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of CYP1A2 in the hepatotoxicity of acetaminophen: investigations using Cyp1a2 null mice.
    Tonge RP; Kelly EJ; Bruschi SA; Kalhorn T; Eaton DL; Nebert DW; Nelson SD
    Toxicol Appl Pharmacol; 1998 Nov; 153(1):102-8. PubMed ID: 9875304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variation in hepatotoxicity and metabolism of acetaminophen in mice.
    Kim YC; Lee SJ
    Toxicology; 1998 Jun; 128(1):53-61. PubMed ID: 9704905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione.
    Rzucidlo SJ; Bounous DI; Jones DP; Brackett BG
    Vet Hum Toxicol; 2000 Jun; 42(3):146-50. PubMed ID: 10839317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hepatotoxic dose of acetaminophen modulates expression of BCL-2, BCL-X(L), and BCL-X(S) during apoptotic and necrotic death of mouse liver cells in vivo.
    Ray SD; Jena N
    Arch Toxicol; 2000 Jan; 73(10-11):594-606. PubMed ID: 10663392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical changes after hepatic injury from toxic doses of acetaminophen or furosemide.
    Thorgeirsson SS; Sasame HA; Mitchell JR; Jollow DJ; Potter WZ
    Pharmacology; 1976; 14(3):205-17. PubMed ID: 183224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kupffer cell stimulation with Corynebacterium parvum reduces some cytochrome P450-dependent activities and diminishes acetaminophen and carbon tetrachloride-induced liver injury in the rat.
    Raiford DS; Thigpen MC
    Toxicol Appl Pharmacol; 1994 Nov; 129(1):36-45. PubMed ID: 7974494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for potential application of zinc as an antidote to acetaminophen-induced hepatotoxicity.
    Woo PC; Kaan SK; Cho CH
    Eur J Pharmacol; 1995 Oct; 293(3):217-24. PubMed ID: 8666038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of cold stress against acetaminophen-induced hepatic injury in B6C3F1 and ICR mice.
    Yamamoto H; Fujii K; Hayakawa T
    Toxicol Lett; 1995 Nov; 81(2-3):125-30. PubMed ID: 8553366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of action of N-acetylcysteine in the protection against the hepatotoxicity of acetaminophen in rats in vivo.
    Lauterburg BH; Corcoran GB; Mitchell JR
    J Clin Invest; 1983 Apr; 71(4):980-91. PubMed ID: 6833497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetaminophen hepatotoxicity in aging rats.
    Rikans LE; Moore DR
    Drug Chem Toxicol; 1988; 11(3):237-47. PubMed ID: 3181038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of salidroside against acetaminophen-induced toxicity in mice.
    Wu YL; Piao DM; Han XH; Nan JX
    Biol Pharm Bull; 2008 Aug; 31(8):1523-9. PubMed ID: 18670083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione depletion exacerbates methylenedianiline toxicity to biliary epithelial cells and hepatocytes in rats.
    Kanz MF; Dugas TR; Liu H; Santa Cruz V
    Toxicol Sci; 2003 Aug; 74(2):447-56. PubMed ID: 12773769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ameliorative Effects and Possible Molecular Mechanism of Action of Black Ginseng (Panax ginseng) on Acetaminophen-Mediated Liver Injury.
    Hu JN; Liu Z; Wang Z; Li XD; Zhang LX; Li W; Wang YP
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28430162
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.